

imexam Documentation
Release 0.1.dev55+gef728ae

Megan Sosey

Jul 17, 2019

CONTENTS

1 Requirements 3

2 How to Install 5

3 Usage 7

4 Common Problems 11

5 Simple Walkthrough 13
5.1 Simple Walkthrough . 13

6 User documentation 21
6.1 The imexam() method . 21
6.2 imexam User Methods . 43
6.3 Convenience functions for DS9’s (XPA) commands . 51
6.4 Example 1 . 54
6.5 Example 2 . 57
6.6 Example 3 . 63
6.7 Example 4 . 71
6.8 Example 5 . 72
6.9 Software Dependencies . 79
6.10 IRAF imexamine capabilities . 80
6.11 Comparison with the IRAF verison of imexamine . 83

7 Reporting Issues 97

8 Contributing 99

9 Reference API 101
9.1 imexam.connect Module . 101
9.2 imexam.imexamine Module . 108
9.3 imexam.ds9_viewer Module . 115
9.4 imexam.ginga_viewer Module . 127

Python Module Index 135

Index 137

i

ii

imexam Documentation, Release 0.1.dev55+gef728ae

The above image is an example desktop interfacing with DS9.

imexam is an affiliated package of AstroPy. It was designed to be a lightweight library that enables users to explore
data using common methods which are consistant across viewers. The power of this python tool is that it is essentially
a library of plotting and analysis routines that can be directed towards any viewer. It attempts to standardize the
analysis interface so that no matter what viewer is in use the calls and results are the same. It can also be used without
connecting to any viewer since the calls take only data and location information. This means that given a data array
and a list of x,y positions you can create plots and return information without having to interact with the viewers, just
by calling the functions directly either from a a command line shell or from a private script.

imexam can be used:

• from a command line interface

• through a Jupyter notebook or through a Jupyter console

• with multiple viewers, such as DS9 or Ginga (submit a github issue or PR to add others)

• without a viewer as a simple library to make plots and grab quick photometry information.

imexam may be used as a replacement for the IRAF imexamine task. You should be able to perform all of the most
used functions that imexamine provided in IRAF, but you also gain the flexibility of python and the ability to add
your own analysis functions. The standalone library has also been used as a replacement for psfmeasure.

CONTENTS 1

imexam Documentation, Release 0.1.dev55+gef728ae

The above image is an example desktop using the Jupyter notebook and the Ginga HTML5 viewer.

2 CONTENTS

CHAPTER

ONE

REQUIREMENTS

This package can be used on Windows, Linux, and MacOS operating systems.

Windows users may download the git repository or do a direct pip install from the git repository. However, they will
not have default access to DS9 because compiling the cython+xpa code cannot currently be done with default installed
software. Instead, Windows users should make sure they install the Ginga viewer for image examination and plotting
using it’s HTML5 viewer. You will have all the same imexam functionality available to you, including the use of
Jupyter notebooks and screen plotting.

imexam currently provides display support two viewers: DS9 and Ginga. The default, when no parameters are
supplied to the connect call, is for imexam to start up it’s own DS9 process and shut it down nicely upon exit. A
Ginga widget using an HTML5 backend is also available as a viewer, most usefull when interacting with the package
inside a Jupyter notebook. The package is designed so that it may easily accept other display devices in the future.
Additionally, an experimental ginga plugin is available which allows use of the basic ginga gui and interaction with
the image display and plots in the imexam style.

The imexam library can be used standalone, without a viewer, to create the plots which are available in the interactive
sessions by importing the plotting object and feeding the functions your data with x,y coordinates for the plots. It can
also be used within the Jupyter notebook framework with either DS9 or the HTML5 backend for viewing. In either
case, the images and plots may be saved inside the notebook in conjunction with the notebook (nbAgg) matplotlib
backend. If you choose to interact with separate plotting windows, it’s still possible to grab an image of the current
image display or plot and save it inside the notebook.

Note: For DS9, it is important to know if you have XPANS installed on your machine and available through
your PATH if you plan to use the nameserver functionality. XPANS is the XPA Name Server, it keeps track of all
the open socket connections for DS9 and provides a reference for their names. If you DO NOT have XPANS in-
stalled, then imexam will still work, but you should either start the DS9 window after importing imexam through the
imexam.connect() interface, OR after you start DS9 from the shell.

You can connect to an already open DS9 window by specifying the title or the XPA_METHOD. The XPA_METHOD
is the address in the File->Information dialog. If users don’t specify a title in the ds9 window when they open one
up, ds9 will just call the window “ds9”, so you can end up with multiple windows with the same name. This works
for DS9 because the XPA_METHOD is always unique. The most straightforward way is for users to open the DS9
windows with explicit titles, and then tell imexam to connect to that window:

python> !ds9 -title megan
python> window=imexam.connect('megan')

However, if there are windows already open with no unique titles, the best way is to connect using the method. The
list_active_ds9 function can be used to return a dictionary which contains the information for all the windows,
but it’s keys are the unique XPA_METHOD strings.:

3

imexam Documentation, Release 0.1.dev55+gef728ae

In [3]: !ds9&
In [4]: imexam.list_active_ds9()
DS9 ds9 gs c0a80106:61894 sosey
Out[4]: {'c0a80106:61894': ('ds9', 'sosey', 'DS9', 'gs')}

Using this dictionary, you can also you can return the list of windows you can connect to without too much thinking,
making it easy to encorporate into your own scripts as well::

In [1]: import imexam

In [2]: windows=imexam.list_active_ds9()
DS9 ds9 gs c0a80106:61915 sosey

In [3]: list(windows)
Out[3]: ['c0a80106:61915']

In [4]: !ds9&

In [5]: windows=imexam.list_active_ds9()
DS9 ds9 gs c0a80106:61915 sosey
DS9 ds9 gs c0a80106:61923 sosey

In [6]: list(windows)
Out[6]: ['c0a80106:61915', 'c0a80106:61923']

In [7]: ds9=imexam.connect(list(windows)[0])

But you can also use it as below to cycle through connecting to a set of windows::

In [8]: windows=imexam.list_active_ds9()
DS9 ds9 gs c0a80106:61915 sosey
DS9 ds9 gs c0a80106:61923 sosey

In [9]: ds=imexam.connect(windows.popitem()[0]) #connect to first window, remove as
→˓possible window
In [10]: windows
Out[11]: {'c0a80106:61923': ('ds9', 'sosey', 'DS9', 'gs')}

In [12]: w2=imexam.connect(windows.popitem()[0])

In [13]: windows
Out[31]: {}

In order to use the Ginga widget display you must have Ginga installed. More information about Ginga can be found
in its package documentation: http://ginga.readthedocs.org/en/latest/. If you are using Python 3 you should also install
Pillow which will aid in the image display. The Ginga documentation will tell you of any of it’s other dependencies.
If you install Ginga you will have access to another display tool for your images and data, the HTML5 widget. You
can find the source code on GitHub, but you can also install it with pip or conda.

You can access this help file on your locally installed copy of the package by using the imexam.display_help() call
after import. This will display the help in your web browser.

Note: All information returned from this module should be considered an estimate of an actual refined result, more
precise analysis of the data should be performed for verification before publication.

4 Chapter 1. Requirements

http://ginga.readthedocs.org/en/latest/

CHAPTER

TWO

HOW TO INSTALL

These are some tips on installing the package, or tracking down problems you might be having during or after instal-
lation.

imexam can be installed from the source code in the normal python fashion after downloading it from the git repo:

python setup.py install

imexam can also be installed using pip or conda, and is included in the Astroconda distribution from STScI:

from PyPI
pip install imexam

if you already have an older version installed
pip install --upgrade imexam

from the master trunk on the repository, considered developmental code
pip install git+https://github.com/spacetelescope/imexam.git

#install version 0.6.3 from the git repository, this uses the git tag reference
pip install git+https://github.com/spacetelescope/imexam.git@v0.6.3#egg=imexam

from the STScI conda release package
conda install imexam -c http://ssb.stsci.edu/astroconda

If you want to have access to the photometry features of the imexam() analysis, download and install photutils
- another of the astropy associated packages. The full list of astropy packages can be found here: https://github.com/
astropy. If photutils is not installed, imexam should issue a nice statement saying that the photometry options
are not available upon import, and any time an analysis key is pressed during the imexam() function loop which
requires photutils to render a result.

5

https://github.com/astropy
https://github.com/astropy

imexam Documentation, Release 0.1.dev55+gef728ae

6 Chapter 2. How to Install

CHAPTER

THREE

USAGE

imexam displays plots using matplotlib, if you find that no windows are popping up after installation it’s probably the
backend that was loaded. One quick way to get things started is to load ipython and use the %matplotlib magic, this
will make sure the proper display backend loads when matplotlib is imported:

>ipython
>%matplotlib
>import imexam

Matplotlib magic should also be used inside the Jupyter notebook or proper interaction with the plots. Before importing
imexam into the notebook, specify the notebook backend if you wish to save your plots into the notebook itself.
Otherwise you can use the standard ipython magics.

imexam is a class based library. The user creates an object which is tied to a specific image viewing window, such as
a DS9 window. In order to interact with multiple windows the user must create multiple objects. Each object stores
all the relevent information about the window and data with which it is associated.

For example, in order to open a new DS9 window and use the object “viewer” to control it, you would issue the
command:

viewer=imexam.connect()

The “viewer” object now has associated methods to view, manipulate and analyze data in the DS9 session. When you
start the connection, you also have the option of specifying a currently open DS9 window using the target keyword.
This keyword can contain the name, the actual text name that you gave the window, or the address of the window.
The address of the window can be found in the File->XPA->Information menu item, is stored as XPA_METHOD, and
is of the form “82a7e75f:58576” for INET sockets, and a file path for local sockets. The following is an example of
connecting to an already active DS9 window which was started outside of imexam:

viewer=imexam.connect("82a7e75f:58576")

or

viewer=imexam.connect("my_window_title")

When imexam starts up a DS9 window itself, it will create an inet socket by default. However, imexam will first
check to see if XPA_METHODwas set in your environment and default to that option. If you are experiencing problems,
or you don’t have an internet connection (the two might be related because the XPA structures INET sockets with an ip
address), you can set your environment variable XPA_METHOD to local or localhost. This will cause imexam
to start a local(unix) socket which will show an XPA_METHOD that is a filename on your computer. imexam defaults
to a local socket connection to allow for users who do not have the XPA installed on their machine or available on
their PATH.

The full XPA source code is maintained as a submodule to the imexam package. If you don’t have the XPA on your
path, simply point it to that location, or copy the xpans executable to the location of your choice, and make sure you

7

imexam Documentation, Release 0.1.dev55+gef728ae

update your PATH. Any time DS9 is started it will start up the xpa nameserver automatically. Then all the xpans query
options will be available through imexam (such as imexam.list_active_ds9()). imexam itself uses Cython wrappers
around the get and set methods from the XPA for it’s communication which is why the fully installed XPA is not
necessary.

If you wish to open multiple DS9 windows outside of imexam, then it’s recommended that you give each a unique
name. If you’ve forgotten which window had which name, you can look in the same XPA info menu and use the
XPA_NAME specified there. If you haven’t given them a unique name, you can list the available windows using
imexam.list_active_ds9() (as long as XPANS is running) and specify their unique address.

imexam will attempt to find the current location of the DS9 executable by default, but you may also supply the path to
the DS9 executable of your choice using the path keyword when you call connect. The fully optional calling sequence
is:

imexam.connect(target="",path=None,viewer="ds9",wait_time=10)

Where target is the name of the ds9 window that is already running, path is the
→˓location of the ds9 executable, viewer is the name of the viewer to use (ds9 is the
→˓only one which is currently activated), and wait_time is the time to wait to
→˓establish a connection to the socket before exiting the process.

If it seems like the ds9 window is opening or hanging, there could be few things going on:

• imexam will default to an inet socket connection for the XPA. However, it will first check your environment
variable XPA_METHOD and preferably use that instead. If you don’t have an internet connection, check this
environment variable, and set it to “local”.

• If things seem in order, it’s possible that your machine is waiting for X11 to start up, give it time to start, or
when you call imexam increase the wait time sufficiently; you can do this by specifying “wait_time=60” when
you open your viewing object with connect(). The 60 here is an example of the number of seconds imexam
should wait before returning a connection error.

• Next, check that the path to the DS9 executable is somewhere on your path and that it has not been aliased to
something else. You can check this from any terminal window by trying to start DS9. You can also use the unix
“which ds9” command to return the full path to the executable, as well as “ls -al ds9” to return the full path and
any soft links which might have been established.

In order to return a list of the current DS9 windows that are running, issue the command:

imexam.list_active_ds9()

Note: More information on DS9 can be found at: http://ds9.si.edu/site/Home.html

If you are using the Ginga widget, the interaction with the imexam code stays the same, you simply specify that you
would like to use Ginga in the call to connect:

viewer=imexam.connect(viewer='ginga')

“ginga” tells imexam that you’d like to use the Ginga widget with the HTML5 background.

In order to turn logging to a file on, issue the command: window.setlog(). The log will be saved to the default filename
imexam_session.log in the current directory unless you give it another filename to use. Here’s an example of how that
might work:

import imexam
window=imexam.connect('ds9')

(continues on next page)

8 Chapter 3. Usage

http://ds9.si.edu/site/Home.html

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

window.setlog() <-- turns on logging with default filename
window.imexam() <-- all output will be logged to the file and displayed on the screen
window.setlog(on=False) <-- turns off logging to file
window.setlog(filename='my_other_log.txt') <-- turns on logging and sets the save
→˓filename

The log will look something like this, you can see it contains a mention of the command used along with the results

gauss_center
xc=812.984250 yc=706.562612

aper_phot
x y radius flux mag(zpt=25.00) sky fwhm
812.98 706.56 5 1288669.29 9.72 11414.53 4.83

show_xy_coords
813.5 706.625

gauss_center
xc=812.984250 yc=706.562612

gauss_center
xc=239.856464 yc=233.444783

aper_phot
x y radius flux mag(zpt=25.00) sky fwhm
239.86 233.44 5 126601.26 12.24 11574.32 -12.67

show_xy_coords
253.0 234.75

gauss_center
xc=239.856464 yc=233.444783

More detailed examples can be found in the examples section of this documentation.

9

imexam Documentation, Release 0.1.dev55+gef728ae

10 Chapter 3. Usage

CHAPTER

FOUR

COMMON PROBLEMS

You’re getting the following error statement when you try to connect() to a DS9 window, or display an image:

XpaException: Unknown XPA Error : XPAGet returned 0!

You can first try using local unix sockets by setting your environment variable XPA_METHOD to local:

setenv XPA_METHOD local #csh

or if you have a bash-like shell:

export XPA_METHOD="local"

or if you want to do it from inside Python:

import os
os.environ['XPA_METHOD'] = "local"

That will create local unix file sockets for communication with ds9. If that doesn’t solve the problem, see if your path
includes the location of xpans, the XPA name server. If you have it installed, but it’s not on your path, put it there.

Alternatively, if you’re getting an error on calling connect() along the lines of:

Connection timeout with the ds9

you may want to force XPA to use the “inet” mode, which is the default unless your XPA_METHOD is set. E.g.,

setenv XPA_METHOD inet #csh
export XPA_METHOD='inet' #bash

(Or similar based on the examples above)

If you are having display issues, some build problems may exist with the dependency packages which deal with back-
end graphics, try setting your matplotlib backend to “Qt4Agg”. You can set this in your .matplotlib/matplotlibrc
file

backend: Qt4Agg

The package works with the Qt5Agg and notebook backends, but on occasion I’ve seen the matplotlib window take
two cycles to update, especially inside the Jupyter notebook with inline plots, meaning you may have to hit the
exam key twice for the plot to appear. This issue still needs to be worked out, if you’re running into it try using the
Qt4Agg backend or plotting outside the notebook and saving the figures through the imexam grab or save calls. More
information about the backends for matplotlib can be found here: https://matplotlib.org/users/shell.html

If you get an error about not finding the file “import” when you use the grab() function to save a copy of the DS9
window.

11

https://matplotlib.org/users/shell.html

imexam Documentation, Release 0.1.dev55+gef728ae

`FileNotFoundError: [Errno 2] No such file or directory: 'import' `

“import” is the unix/linux import command, it saves any visible window on an X server and outputs it as an image file,
it’s included with many macos and linux installations, it’s likely not on windows. Users should check their path to see
if it’s included. This only affects grab() for DS9 which saves a copy of the DS9 window on the workspace, it does not
affect saves for ginga or matplotlib plots.

imexam switched to using import to get around a bug in the XPA for the saveimage call to the XPA. The DS9
saveimage function basically does a screen capture. In the case of MacOSX (and XQuartz) when you are configured
to be rootless, the screen capture fails if your DS9 window is not in the upper left corner of the primary screen - the call
should work if you are using a laptop that is not connected to a larger display, or a workstation with only one monitor.
Since these are harder things to automatically grab from user environments, the workaround was to ‘Print’ to a file,
generating a postscript image that can be rendered outside of ds9 (for example /Applications/Preview). However, I
was unable to get this to save to file, the functions it insisted on sending the image directly to the printer. This also
makes for greater unknowns on user machines. The workarounds for users who hit this may be:

• screen grab a copy of the window yourself (grabbing saves any overlays as well)

• move the DS9 window to the appropriate screen and issue the saveimage command, assuming “a” is your control
object, that would look like: a.window.xpa.set(“saveimage ds9.jpeg”)

If you are experiencing an issue not related to those descibed above you can open a new issue on the imexam GitHub
issue tracker. You can view older closed issues there as well.

12 Chapter 4. Common Problems

https://github.com/spacetelescope/imexam/issues
https://github.com/spacetelescope/imexam/issues

CHAPTER

FIVE

SIMPLE WALKTHROUGH

5.1 Simple Walkthrough

This is intended as a basic example of using the imexam package as a quicklook for image examination. If you are
new to python or to the python version of imexam, start here to get your feet wet.

First you need to import the package

import imexam

5.1.1 Usage with D9 (the current default viewer)

Start up a DS9 window (DS9 is the default viewer):

• a new DS9 window will be opened

• open a fits image

• scale the image using zscale():

viewer=imexam.connect() # startup a new DS9 window
viewer.load_fits('iacs01t4q_flt.fits') # load a fits image into it
viewer.scale() # run default zscaling on the image

13

imexam Documentation, Release 0.1.dev55+gef728ae

If you already have a DS9 gui running, you can ask for a list of available windows:

This will display if you've used the default command above and have no other DS9
→˓windows open
In [1]: imexam.list_active_ds9()
DS9 imexam1522943947.288667 gs a825364:62436 sosey
Out[2]: {'a825364:62436': ('imexam1522943947.288667', 'sosey', 'DS9', 'gs')}

imexam puts its own unique name on the window

open a window in another process from the shell
you should see it use the default name, 'ds9'
In [3]: !ds9&
In [4]: imexam.list_active_ds9()
Out[7]:
{'a825364:62436': ('imexam1522943947.288667', 'sosey', 'DS9', 'gs'),
'a825364:62459': ('ds9', 'sosey', 'DS9', 'gs')}

14 Chapter 5. Simple Walkthrough

imexam Documentation, Release 0.1.dev55+gef728ae

You can attach to a current DS9 window by specifying its unique name, this is the first name listed in the dictionary
item values tuple:

viewer1 = imexam.connect('ds9')

If you haven’t given your windows unique names using the -title <name> option from the commandline, then
you must use the ip:port address. This address is also the key that is returned in the dictionary of active DS9 windows.
In order to attached to the window we stared in the shell, use : a825364:62459

viewer1 = imexam.connect(‘a825364:62459’)

Load a fits image into the new DS9 window:

viewer1.load_fits(‘n8q624e8q_cal.fits’)

You may have noticed that the information from list_active_ds9() is returned in a python dictionary structure,
this is to enable quick cycling or picking of available DS9 windows by asking for the keys in the dictionary. This
following is just for instruction purposes, the code below asks for the list of windows and then successively displays
the same image to each one:

ds9_windows = imexam.list_active_ds9()
for window in ds9_windows:

temp=imexam.connect(window)
temp.load_fits('n8q624e8q_cal.fits')

It’s also possible to load a FITS image object that you already have opened in your python session, if no extension is
given, then the first IMAGE exension that is found will be loaded as a numpy array:

from astropy.io import fits
image = fits.open('n8q624e8q_cal.fits')
viewer1.load_fits(image)

Using get_viewer_info() returns information about what is contained inside the DS9 window. There could be
many uses for the returned dictionary, here I’m just listing the information to show you how the display of the FITS
file versus the FITS object changes the information that imexam stores:

In [23]: viewer1.get_viewer_info()
Out[23]:
{'1': {'extname': 'SCI',

'extver': 1,
'filename': '/Users/sosey/test_images/n8q624e8q_cal.fits',
'iscube': False,
'mef': True,
'naxis': 0,
'numaxis': 2,
'user_array': None}}

Above, you can see there is only 1 frame, named 1, that
contains a multi-extension fits file

In [24]: from astropy.io import fits
In [25]: image = fits.open('n8q624e8q_cal.fits')
In [26]: viewer1.load_fits(image)
In [27]: viewer1.get_viewer_info()
Out[27]:
{'1': {'extname': None,
'extver': None,
'filename': None,
'iscube': False,

(continues on next page)

5.1. Simple Walkthrough 15

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

'mef': False,
'naxis': 0,
'numaxis': 2,
'user_array': array([[0. , 0. , 0.73420113, ..., 2.29928851,

1.13779497, 0.40814143],
[0. , 0.76415622, 0. , ..., 2.02307796,

1.07565212, 0.44265628],
[0. , 0.76297635, 0.65969932, ..., 0.61184824,

0.48248726, 0.41064522],
...,
[0.5144701 , 0.38698068, 0.31468284, ..., 1.57044649,

0.42518842, 0.50868863],
[0.44805121, 0.34715804, 0.33939072, ..., 0.67747742,

0.46475834, 0.51104462],
[0.53063494, 0.54570055, 0.53724855, ..., 0.4361479 ,

0.58057427, 0.45152891]], dtype=float32)}}

Above you can see that there is only 1 frame, but it contains
a numpy array and no filename reference.

You can also load a numpy array directly, we’ll create an example array and display it to our viewer:

import numpy as np
array = np.ones((100,100), dtype=np.float) * np.random.rand(100)
viewer.view(array)
viewer.zoom() # by default, zoom-to-fit, or give it a scale factor

16 Chapter 5. Simple Walkthrough

imexam Documentation, Release 0.1.dev55+gef728ae

Now lets use imexam() to create a couple plots:

viewer.load_fits('n8q624e8q_cal.fits')
viewer.imexam()

The available key mappings should be printed to your terminal:

In [7]: viewer.imexam()

Press 'q' to quit

2 Make the next plot in a new window
a Aperture sum, with radius region_size
b Return the 2D gauss fit center of the object
c Return column plot
e Return a contour plot in a region around the cursor
g Return curve of growth plot
h Return a histogram in the region around the cursor
j 1D [Gaussian1D default] line fit
k 1D [Gaussian1D default] column fit
l Return line plot
m Square region stats, in [region_size],default is median
r Return the radial profile plot

(continues on next page)

5.1. Simple Walkthrough 17

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

s Save current figure to disk as [plot_name]
t Make a fits image cutout using pointer location
w Display a surface plot around the cursor location
x Return x,y,value of pixel
y Return x,y,value of pixel

Look at the window below, I’ve started the imexam loop and then pressed the ‘a’ key to create an aperture photometry
plot (which also printed information about the photometry to the terminal), then I pressed the ‘2’ key in order to keep
the current plot open and direct the next plot to a new window, where I’ve asked for a line plot of the same star, using
the ‘l’ key.

You should see the printed information in your terminal:

Current image /Users/sosey/test_images/n8q624e8q_cal.fits
xc=104.757598 yc=131.706727
x y radius flux mag(zpt=25.00) sky/pix
→˓ fwhm(pix)
104.76 131.71 5 33.84 21.18 0.87
→˓ 1.73
Plots now directed towards imexam2
Line at 104.75 131.625

18 Chapter 5. Simple Walkthrough

imexam Documentation, Release 0.1.dev55+gef728ae

Users may change the default settings for each of the imexamine recognized keys by editing the associated dictionary.
You can edit it directly, by accessing each of the values by their keyname and then reset mydict to values you prefer.
You can also create a new dictionary of functions which map to your own analysis functions.

However, you can access the same dictionary and customize the plotting parameters using set_plot_pars. In the
following example, I’m setting three of the parameters for the contour map, whose imexam key is “e”:

#customize the plotting parameters (or any function in the imexam loop)
viewer.set_plot_pars('e','title','This is my favorite galaxy')
viewer.set_plot_pars('e','ncontours',4)
viewer.set_plot_pars('e','cmap','YlOrRd') #see http://matplotlib.org/users/colormaps.
→˓html

where the full dictionary of available values can be found using the eimexam() function described above.:

In [1]: viewer.eimexam()
Out[2]:
{'ceiling': [None, 'Maximum value to be contoured'],
'cmap': ['RdBu', 'Colormap (matplotlib style) for image'],
'floor': [None, 'Minimum value to be contoured'],
'function': ['contour'],
'label': [True, 'Label major contours with their values? [bool]'],
'linestyle': ['--', 'matplotlib linestyle'],
'ncolumns': [15, 'Number of columns'],
'ncontours': [8, 'Number of contours to be drawn'],
'nlines': [15, 'Number of lines'],
'title': [None, 'Title of the plot'],
'xlabel': ['x', 'The string for the xaxis label'],
'ylabel': ['y', 'The string for the yaxis label']}

Users may also add their own imexam keys and associated functions by registering them with the regis-
ter(user_funct=dict()) method. The new binding will be added to the dictionary of imexamine functions as long as
the key is unique. The new functions do not have to have default dictionaries association with them, but users are free
to create them.

5.1.2 Usage with Ginga viewer

Start up a ginga window using the HTML5 backend and display an image. Make sure that you have installed the most
recent version of ginga, imexam may return an error that the viewer cannot be found otherwise.:

since we've already used the viewer object
to point to a DS9 window in the example
above, we'll first cleanly close that down
viewer.close()

now connect to a ginga window
viewer=imexam.connect(viewer='ginga')
viewer.load_fits('n8q624e8q_cal.fits')

Note: All commands after your chosen viewer is opened are the same. Each viewer may also have it’s own set of
commands which you can additionally use.

Scale the image to the default scaling, which is a zscale algorithm, but the viewers other scaling options are also
available:

5.1. Simple Walkthrough 19

imexam Documentation, Release 0.1.dev55+gef728ae

viewer.scale()
viewer.scale('asinh') # <-- uses asinh

Note: When using the Ginga interface, the imexam plotting and analysis functions are used by pressing the ‘i’ key
to enter imexam mode. Inside this mode the key mappings are as listed by imexam, outside of this mode (pressing
‘q’) the Ginga key mappings are in effect.

When you are using the HTML5 Ginga viewer, the close() method will stop the HTTP server, but you must close
the window manually.

In [34]: viewer.close() Stopped http server

20 Chapter 5. Simple Walkthrough

CHAPTER

SIX

USER DOCUMENTATION

6.1 The imexam() method

This is the main method which allows live interaction with the image display when you are viewing your image or
data array. If you execute imexam() while using the Ginga widget, it will display the available options, however they
are always available for use via keystroke and are event-driven (using the same keys described below). In order to turn
the key-press capture on and off while you have your mouse in the Ginga widget press the “i” key. Either the “i” or
“q” key can be used to quit out of the examination mode.

imexam (): access realtime imexamine functions through the keyboard and mouse

Current recognized keys available during imexam are:

2 Make the next plot in a new window
a Aperture sum, with radius region_size
b Return the 2D gauss fit center of the object
c Return column plot
e Return a contour plot in a region around the cursor
g Return curve of growth plot
h Return a histogram in the region around the cursor
j 1D [Gaussian1D default] line fit
k 1D [Gaussian1D default] column fit
l Return line plot
m Square region stats, in [region_size],default is median
r Return the radial profile plot
s Save current figure to disk as [plot_name]
t Make a fits image cutout using pointer location
w Display a surface plot around the cursor location
x Return x,y,value of pixel
y Return x,y,value of pixel

aimexam(): return a dict of current parameters for aperture photometery

cimexam(): return dict of current parameters for column plots

eimexam(): return dict of current parameters for contour plots

himexam(): return dict current parameters for histogram plots

jimexam(): return dict current parameters for 1D line plots

kimexam(): return dict of current parameters for 1D column plots

limexam(): return dict of current parameters for line plots

(continues on next page)

21

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

gimexam(): return dict of current parameters for curve of growth plots

rimexam(): return the dict of current parameters for radial profile plots

wimexam(): return dict of current parameters for surface plots

mimexam(): return dict of current parameters for area statistics

timexam(): return a dict of the current parameters for image cutouts

Note: Some of the plots accept a marker type, any valid Matplotlib marker may be specified. See this page for the
full list: http://matplotlib.org/api/markers_api.html#module-matplotlib.markers

The imexam key dictionary is stored inside the user object as <object_name>.exam.imexam_option_funcs{}. Each
key in the dictionary is the keyboard key to recognize from the user, it’s associated value is a tuple which contains the
name of the function to call and a description of what that function does. “q” is always assumed to be the returned
key when the user wishes to quit interaction with the window. Users may change the default settings for each of the
imexamine recognized keys by editing the associated dictionary. You can edit it directly, by accessing each of the
values by their keyname and then reset mydict to values you prefer. You can also create a new dictionary of function
which maps to your own

However, you can access the same dictionary and customize the plotting parameters using set_plot_pars. In the
following example, I’m setting three of the parameters for the contour map, whose imexam key is “e”:

#customize the plotting parameters (or any function in the imexam loop)
viewer.set_plot_pars('e','title','This is my favorite galaxy')
viewer.set_plot_pars('e','ncontours',4)
viewer.set_plot_pars('e','cmap','YlOrRd') #see http://matplotlib.org/users/colormaps.
→˓html

where the full dictionary of available values can be found using the eimexam() function described above.:

In [1]: viewer.eimexam()
Out[2]:
{'ceiling': [None, 'Maximum value to be contoured'],
'cmap': ['RdBu', 'Colormap (matplotlib style) for image'],
'floor': [None, 'Minimum value to be contoured'],
'function': ['contour'],
'label': [True, 'Label major contours with their values? [bool]'],
'linestyle': ['--', 'matplotlib linestyle'],
'ncolumns': [15, 'Number of columns'],
'ncontours': [8, 'Number of contours to be drawn'],
'nlines': [15, 'Number of lines'],
'title': [None, 'Title of the plot'],
'xlabel': ['x', 'The string for the xaxis label'],
'ylabel': ['y', 'The string for the yaxis label']}

Users may also add their own imexam keys and associated functions by registering them with the regis-
ter(user_funct=dict()) method. The new binding will be added to the dictionary of imexamine functions as long as
the key is unique. The new functions do not have to have default dictionaries association with them, but users are free
to create them.

For all the examples below I will use a session similar to the following example:

22 Chapter 6. User documentation

http://matplotlib.org/api/markers_api.html#module-matplotlib.markers

imexam Documentation, Release 0.1.dev55+gef728ae

#This will default to DS9 for the viewer

import imexam
viewer=imexam.connect()
viewer.load_fits('iabf01bzq_flt.fits')
viewer.scale()
viewer.panto_image(576,633)
viewer.zoom(3)

This will use Ginga (instead of the default DS9) for the viewer:

#Use Ginga for the image viewer, make sure it is installed

import imexam
viewer=imexam.connect(viewer='ginga')
viewer.load_fits('iabf01bzq_flt.fits')
viewer.scale()
viewer.panto_image(576,633)
viewer.zoom(3)

6.1. The imexam() method 23

imexam Documentation, Release 0.1.dev55+gef728ae

6.1.1 Circular Apterture Photometry

Aperture photometry is performed when you press the “a” key. It is implemented using the photutils python package,
an affiliated package of astropy that is still in development.

Currently, the calculation which is performed is similar to the “,” or “a” IRAF imexamine keys. It is circular aperture
photometry, centered on the mouse location at the time the key is pressed, with a background annulus subtraction for
the sky. The radius of the aperture is set with the region_size keyword (default to 5 pixels). The annulus size is also
set to the width, and taken a distance of skyrad pixels from the center. The pixels used to calculate the enclosed flux
are those whose centers fall inside the radius distance, in the same way that IRAF imexamine computes the flux.

These are the default parameters for aperture photometry. They live in a dictionary in the exam object:

The direct access:

viewer.exam.aper_phot_pars= {'function':["aperphot",],
'center':[True,"Center the object location using a Gaussian2D fit"],
'width':[5,"Width of sky annulus in pixels"],
'subsky':[True,"Subtract a sky background?"],
'skyrad':[15,"Distance to start sky annulus is pixels"],
'radius':[5,"Radius of aperture for star flux"],
'zmag':[25.,"zeropoint for the magnitude calculation"],
'genplot': [True, 'Plot the apertures'],
'title': [None, 'Title of the plot'],
'scale': ['zscale', 'How to scale the image'],
'color_min': [None, 'Minimum color value'],
'color_max': [None, 'Maximum color value'],
'cmap': ['Greys', 'Matplotlib colormap to use']
}

(continues on next page)

24 Chapter 6. User documentation

http://github.com/astropy/photutils/

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

Using the convenience function:

In [1]: viewer.aimexam()
Out[2]:
{'center': [True, 'Center the object location using a 2d gaussian fit'],
'function': ['aper_phot'],
'radius': [5, 'Radius of aperture for star flux'],
'skyrad': [15, 'Distance to start sky annulus is pixels'],
'subsky': [True, 'Subtract a sky background?'],
'width': [5, 'Width of sky annulus in pixels'],
'zmag': [25.0, 'zeropoint for the magnitude calculation'],
'genplot': [True, 'Plot the apertures'],
'title': [None, 'Title of the plot'],
'scale': ['zscale', 'How to scale the image'],
'color_min': [None, 'Minimum color value'],
'color_max': [None, 'Maximum color value'],
'cmap': ['Greys', 'Matplotlib colormap to use']}

In order to change the width of the photometry aperture around the object you would do this::

viewer.set_plot_pars('a',"radius",10)

This is what the return looks like when you do photometry, where I’ve asked for photometry from the star above:

viewer.imexam()

xc=574.988523 yc=632.680333
x y radius flux mag(zpt=25.00) sky/pix
→˓ fwhm(pix)
574.99 632.68 10 2178054.09 9.15 11005.40
→˓ 5.72

xc = xcenter, yc=ycenter; these were found using a Gaussian2D fit centered on the pixel location of the mouse. You
can turn the fit off by setting the “center” parameter to “False”.

This is the resulting plot:

6.1. The imexam() method 25

imexam Documentation, Release 0.1.dev55+gef728ae

6.1.2 Available 1D profiles

These include Gaussian1D, Moffat1D, MexicanHat1D, AiryDisk2D, and Polynomial1D.

If you press the “j” or “k” keys, a 1D profile is fit to the data in either the line or column of the current pointer location.
An option to use a Polynomial1D fit is also available, although not something of use for looking at stellar profiles. A
plot of both the data and the fit + parameters is displayed. If the centering option is True, then the center of the flux is
computed by fitting a 2d Gaussian to the data.

line_fit_pars={"function":["line_fit",],
"func":["gaussian"," function for fitting [see available]"],
"title":["Fit 1D line plot","Title of the plot"],
"xlabel":["Line", "The string for the xaxis label"],
"ylabel":["Flux", "The string for the yaxis label"],
"background":[False, "Solve for background? [bool]"],
"width":[10.0, "Background width in pixels"],
"xorder":[0, "Background terms to fit, 0=median"],
"rplot":[20., "Plotting radius in pixels"],
"pointmode":[True, "plot points instead of lines? [bool]"],
"logx":[False, "log scale x-axis?"],
"logy":[False, "log scale y-axis?"],
"center":[True, "Recenter around the local max"],
}

The column fit parameters are similar:

column_fit_pars={"function":["column_fit",],
"func":["Gaussian1D", "function for fitting [see available]"],

(continues on next page)

26 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

"title":["Fit 1D column plot", "Title of the plot"],
"xlabel":["Column", "The string for the xaxis label"],
"ylabel":["Flux", "The string for the yaxis label"],
"background":[False, "Solve for background? [bool]"],
"width":[10.0, "Background width in pixels"],
"xorder":[0, "Background terms to fit, 0=median"],
"rplot":[20., "Plo tting radius in pixels"],
"pointmode":[True,"plot points instead of lines? [bool]"],
"logx":[False, "log scale x-axis?"],
"logy":[False, "log scale y-axis?"],
"center":[True, "Recenter around the local max"],
}

This is the resulting line fit:

and the corresponding column fit:

6.1. The imexam() method 27

imexam Documentation, Release 0.1.dev55+gef728ae

6.1.3 Square region statistics

If you press the “m” key, the pixel values around the pointer location are calculated inside a box which has a side equal
to the region_size, defaulted to 5 pixels, and using the statistical function chosen.

The user can map the function to any reasonable numpy function, it’s set to numpy.median by default:

report_stat_pars= {"function":["report_stat",],
"stat":["median", "numpy stat name or describe for scipy.stats"],
"region_size":[5, "region size in pixels to use"],

}

[573:578,629:634] median: 50632.000000

You can change the statistic reported by changing the “stat” parameter:

viewer.set_plot_pars('m', "stat", "max")

[572:577,629:634] amax: 55271.000000

You can make a quick comparison of the max reported above with the line fit graph in the 1D gaussian profile example.

You can also choose to use the scipy.stats.describe function if you have scipy installed by changing the stat to “de-
scribe”; this will report the combined stats for the region::

pressed: m, report_stat
[551:556,653:658] describe:
nobs: 25

(continues on next page)

28 Chapter 6. User documentation

http://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.describe.html

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

minamx: (0.51326549, 0.85604763)
mean 0.6851165890693665
variance: 0.00780616095289588
skew: 0.05719175934791565
kurtosis: -0.47930471400886976

6.1.4 Pixel Coordinates and Value

Hitting the ‘x’ or ‘y’ will return the x,y coordinate and pixel value under the mouse pointer.:

576.0 633.66667 55271.0

When not inside the imexam() loop, you can also set the location of the pointer using the wcs or pixel location you
wish to view.

6.1.5 Line or Column plots

Pressing the “l” or “c” keys will display a plot of the points through either the line or column closest to the cursor
location.

6.1. The imexam() method 29

imexam Documentation, Release 0.1.dev55+gef728ae

6.1.6 Radial Profile Plot

Pressing the “r” key displays a radial profile plot for the flux around the current pointer location. If centering is on, the
center is computed close to the star using a Gaussian2D fit. The default plot uses every pixel

The available parameters are

radial_profile_pars = {"function": ["radial_profile_plot",],
"title": ["Radial Profile", "Title of the plot"],
"xlabel": ["Radius", "The string for the xaxis label"],
"ylabel": ["Summed Pixel Value", "The string for the yaxis label"],
'pixels': [True, 'Plot all pixels at each radius? (False bins the data)']
"fitplot": [False,"Overplot profile fit?"],
"fittype":["Gaussian1D","Profile type to fit (gaussian)"],
"center": [True, "Solve for center using 2d Gaussian? [bool]"],
"background": [True, "Subtract background? [bool]"],
"skyrad": [10., "Background inner radius in pixels, from center of object

→˓"],
"width": [5., "Background annulus width in pixels"],
"magzero": [25., "magnitude zero point"],
"rplot": [8., "Plotting radius in pixels"],
"pointmode": [True, "plot points instead of lines? [bool]"],
"marker": ["o", "The marker character to use, matplotlib style"],
"minflux": [0., "only measure flux above this value"],
"getdata": [True, "return the plotted data values"]
}

Radial profile plot for all pixels around the location:

30 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

Radial profile plot for all pixels, binned to integer radii:

6.1. The imexam() method 31

imexam Documentation, Release 0.1.dev55+gef728ae

6.1.7 Curve of Growth plot

Pressing the “r” key displays a curve of growth for the flux around the current pointer location in successively larger
radii. If centering is on, the center is computed close to the star using a 2d gaussian fit.

The available parameters are

curve_of_growth_pars={"function":["curve_of_growth_plot",],
"title":["Curve of Growth","Title of the plot"],
"xlabel":["radius","The string for the xaxis label"],
"ylabel":["Flux","The string for the yaxis label"],
"center":[True,"Solve for center using 2d Gaussian? [bool]"],
"background":[True,"Fit and subtract background? [bool]"],
"buffer":[25.,"Background inner radius in pixels,from center of

→˓star"],
"width":[5.,"Background annulus width in pixels"],
"magzero":[25.,"magnitude zero point"],
"rplot":[8.,"Plotting radius in pixels"],
"pointmode":[True,"plot points instead of lines? [bool]"],
"marker":["o","The marker character to use, matplotlib style"],
"logx":[False,"log scale x-axis?"],
"logy":[False,"log scale y-axis?"],
"minflux":[0., "only measure flux above this value"],
}

Returned to the screen is the data information from the plot, the (x,y) location of the center, followed by the radius and
corresponding flux which was measured:

viewer.set_plot_pars('g',"rplot",25) #set the default radius larger

(continues on next page)

32 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

xc=577.242311 yc=634.578361

at (x,y)=577,634
radii:[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25]
flux:[131192.03694247041, 489485.48536408512, 911376.50226695999, 1301726.7189847208,
→˓1547865.8684735354, 1777547.7859571185, 1940955.1267221647, 2047700.7156964755,
→˓2165971.1952809561, 2280391.5901085823, 2376090.3555588746, 2458370.0006153183,
→˓2523384.2243051622, 2575208.3657517368, 2609309.6524876151, 2643279.3635597304,
→˓2672443.1546003688, 2687659.5178374872, 2702128.5513395425, 2709501.1520242952,
→˓2720134.8632924128, 2734777.3482598308, 2746056.5231984705, 2770352.0070485324,
→˓2781242.3299104609]

6.1.8 Histogram Plots

Pressing the “h” key will display a histogram of pixel values around the pixel location under the mouse pointer.

histogram_pars={"function":["histogram",],
"title":["Histogram","Title of the plot"],
"xlabel":["Flux (bin)","The string for the xaxis label"],
"ylabel":["Count","The string for the yaxis label"],
"ncolumns":[21,"Number of columns"],
"nlines":[21,"Number of lines"],
"nbins":[100,"Number of bins"],
"z1":[None,"Minimum histogram intensity"],
"z2":[100,"Maximum histogram intensity"],
"pointmode":[True,"plot points instead of lines? [bool]"],
"marker":["o","The marker character to use, matplotlib style"],
"logx":[False,"log scale x-axis?"],
"logy":[False,"log scale y-axis?"],
}

6.1. The imexam() method 33

imexam Documentation, Release 0.1.dev55+gef728ae

6.1.9 Contour Plots

Pressing the “e” key will display a contour plot around the clicked pixel location.

contour_pars={"function":["contour",],
"title":["Contour plot in region around pixel location","Title of

→˓the plot"],
"xlabel":["x","The string for the xaxis label"],
"ylabel":["y","The string for the yaxis label"],
"ncolumns":[15,"Number of columns"],
"nlines":[15,"Number of lines"],
"floor":[None,"Minimum value to be contoured"],
"ceiling":[None,"Maximum value to be contoured"],
"ncontours":[8,"Number of contours to be drawn"],
"linestyle":["--","matplotlib linestyle"],
"label":[True,"Label major contours with their values? [bool]"],
"cmap":["viridis","Colormap (matplotlib style) for image"],
}

34 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

Here’s what it looks like if we change some of the default parameters:

viewer.set_plot_pars('e', "cmap", "gist_heat")
viewer.set_plot_pars('e', "title", "Contours around my favorite star")
viewer.set_plot_pars('e', "ncontours", 4)
viewer.set_plot_pars('e', "floor", 0)

6.1. The imexam() method 35

imexam Documentation, Release 0.1.dev55+gef728ae

Note: You can use any of the matplotlib standard cmaps, see the following link for more information: http:
//matplotlib.org/api/pyplot_summary.html?highlight=colormaps#matplotlib.pyplot.colormaps

6.1.10 Surface Plots

Pressing the “s” key will display a 3D surface plot of pixel values around the mouse pointer location with the default
parameters:

surface_pars = {"function": ["surface",],
"title": [None, "Title of the plot"],
"xlabel": ["X", "The string for the xaxis label"],
"ylabel": ["Y", "The string for the yaxis label"],
"zlabel": [None, "Label for zaxis"],
"ncolumns": [10, "Number of columns"],
"nlines": [10, "Number of lines"],
"azim": [None, "azimuthal viewing angle in degrees"],
"floor": [None, "Minimum value to be contoured"],
"ceiling": [None, "Maximum value to be contoured"],
"stride": [1, "step size, higher vals will have less contour"],
"cmap": ["viridis", "colormap (matplotlib) for display"],
"fancy": [True, "This aint your grandpas iraf"],
}

36 Chapter 6. User documentation

http://matplotlib.org/api/pyplot_summary.html?highlight=colormaps#matplotlib.pyplot.colormaps
http://matplotlib.org/api/pyplot_summary.html?highlight=colormaps#matplotlib.pyplot.colormaps

imexam Documentation, Release 0.1.dev55+gef728ae

Or, with the contours turned off (by setting fancy to False) and changing the title:

6.1. The imexam() method 37

imexam Documentation, Release 0.1.dev55+gef728ae

38 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

6.1.11 Cutout a Simple FITS Image

Okay, I went to the star I like and pressed “t”. Let’s verify that we got what we wanted, it should be a cutout centered
on the star that we’ve used in all the examples here:

image=fits.open('cutout_575.0_633.07fdinJ.fits')
viewer.frame(2)
viewer.view(image)

And the resulting frame view?

6.1. The imexam() method 39

imexam Documentation, Release 0.1.dev55+gef728ae

Sweet. Because this is a often used function I’ve made it a part of the standard selection set. If you wish to use the
astropy 2D cutout method, you can create your own function which will also pass in the WCS object for the data so
that the cutout retains it’s WCS information.

6.1.12 User Specified functions

Users may code their own functions and bind them to keys by registering them with the imexam dictionary through
the register method that lives in the exam object. As long as a unique key is provided, the new binding will be added
to the dictionary of imexamine functions. The new functions do not have to have default dictionaries associated with
them. The binding is only good for the current object, new instantiations of imexam.connect() will not have the
new function unless the user specifically registers them.

Here’s all the code for a function which saves the cursor location to a file called ‘test.list’ when the user presses the
‘p’ key:

def save_to_file(self,x,y,data):
"""Save the cursor location only to a file"""
if data is None:
data = self._data

with open('test.list','a') as ofile:
ofile.write("{0}\t{1}\n".format(x,y))

print("Saved star to ",'test.list')

Now, import that into your python session, file, or here I’ll just copy paste the definition to the session. This is
an important step because the function reference is what you are going to send to the registration method. The
registration method wants you to supply a dictionary which contains the key you want to assign that function to during
the imexam() loop, and a tuple with the function name and description:

40 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

my_dict = {'p': (save_to_file, 'Save cursor location to file')}

viewer.exam.register(my_dict)
User function: save_to_file added to imexam options with key p

Okay, so let’s try out our new function! We should be able to see it in the list of available options.

In [18]: a.imexam()

Press 'q' to quit

2 Make the next plot in a new window
a Aperture sum, with radius region_size
b Return the 2D gauss fit center of the object
c Return column plot
e Return a contour plot in a region around the cursor
g Return curve of growth plot
h Return a histogram in the region around the cursor
j 1D [Gaussian1D default] line fit
k 1D [Gaussian1D default] column fit
l Return line plot
m Square region stats, in [region_size],default is median
p Save cursor location to file
r Return the radial profile plot
s Save current figure to disk as [plot_name]
t Make a fits image cutout using pointer location
w Display a surface plot around the cursor location
x Return x,y,value of pixel
y Return x,y,value of pixel

Current image /Users/sosey/test_images/iacs01t4q_flt.fits
pressed: p, save_to_file
Saved star to test.list

In [19]: !more test.list
463.0 376.75

6.1.13 Plot Multiple Windows

During a single viewer.imexam() session, you can choose to send your plots to multiple windows. Each window may
only be used once, but if you would like to plot multiple things to compare, either the same plots for multiple objects
or multiple types of plots for a single object, you can press the “2” key. This will save the current plotting window on
your desktop and send the next plot to a new window. The plotting windows will be closed when you exit the imexam
loop, so be sure to use the “s” key to save a quick copy of any plots you’d like to save for refernce. Here’s what that
might look like:

#run aperture photometry("a"):

xc=576.522433 yc=634.578085
x y radius flux mag(zpt=25.00) sky
→˓ fwhm
576.52 634.58 5 1560462.68 9.52 10996.52
→˓ 5.58

#make a column plot ("c")

(continues on next page)

6.1. The imexam() method 41

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

#direct to a new window and make a contour plot ("e")
Plots now directed towards imexam2

#direct to a new window and make a curve of growth ("r")
Plots now directed towards imexam3

#the resulting curve of growth information on the screen
xc=576.855763 yc=634.911425

at (x,y)=576,634
radii:[1 2 3 4 5 6 7 8]
flux:[134294.19631173008, 521208.13904411002, 1017231.0442446949, 1297592.7076232315,
→˓1568629.6771239617, 1813434.3810552177, 1935335.7549474821, 2049080.846300941]

This is what the workspace could look like with DS9 as the viewer:

As an aside, you can use the GUI tools on the bottom of the plot windows to move around the displayed data, such as
zooming in and out, as shown below for the contour plot, which was also saved using the GUI save button:

42 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

6.2 imexam User Methods

These are methods particular to the imexam package which are meant to aid users in their image analysis. They are
called from the main object you created with imexam.connect().

At the top library level, the follow commands are available::

imexam.connect(): connect to a viewer and return a control object
imexam.display_help(): Takes you to the help documents for your installed version of
→˓imexam
imexam.defpars: contains the default plotting function dictionaries
imexam.imexamine: this class contains the plotting functions and can be instantiated
→˓by itself
imexam.set_logging(): set the logging parameters for your session.

Each object has access to it’s own logging which can be edited using viewer.setlog() The following will also be
available for those not on a Windows system, where the XPA and DS9 are installed::

imexam.display_xpa_help(): Takes you to the XPA help page for DS9
imexam.list_active_ds9(): returns a dictionary of available DS9 sessions for
→˓connection

You can always get the commands available to your local viewer by asking the control object for them directly. If you
called your control object “viewer” then the following example will return the list::

6.2. imexam User Methods 43

imexam Documentation, Release 0.1.dev55+gef728ae

viewer.show_window_commands() # will return a list of available commands

Not all viewers have all commands implemented, commands which are available but not yet fully implemented should
return an error to that affect.

alignwcs(on=True): Align the images in the viewer using the WCS in their headers

viewer.alignwcs()

blink(blink=True, interval=None): For viewers with multiple frames, blink the images

clear_contour(): Clear contours from the screen

close(): close the image viewing window and end the connection.

viewer.close()

cmap(color=None, load=None, invert=False, save=False,filename=’colormap.ds9’): Set the colormap for the
window

colorbar(on=True): Turn the colorbar in the window on or off

contour(on=True, construct=True): Show contours in the window

crosshair(x=None, y=None, coordsys=”physical”, skyframe=”wcs”, skyformat=”fk5”, match=False, lock=False):
Control the position of the crosshair in the current frame

cursor(x=None, y=None): Move the cursor in the window to the specified pixel location

disp_header(): Display the image header

frame(n=None): Convenience function to change or report the frame

get_data(): Return a numpy array of the data displayed in the current frame

get_filename(): Return the filename for the data in the current window

In [1]: viewer.get_filename()
Out[2]: '/Users/sosey/ssb/imexam/iabf01bzq_flt.fits'

get_frame_info(): Return more explicit information about the data displayed in the current frame. A dictionary of
the information is returned.

In [1]: viewer.get_frame_info()

{'extname': 'SCI',
'extver': 1,
'filename': '/Users/sosey/ssb/imexam/iabf01bzq_flt.fits',
'iscube': False,
'mef': True,
'naxis': 0,
'numaxis': 2,
'user_array': None}

get_header(): Return the header of the dataset in the current frame

get_image(): Return the full image object for the data in the current frame

get_slice_info(): Return the slice tuple for the image currently displayed

get_viewer_info(): Return a dictionary which contains information about all frames which have data loaded. This
could be useful to users who are scripting an analysis for polling what items are available, how many frames or
displayed, what type of data is hanging around, etc . . .

44 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

In [1]: viewer.get_viewer_info()

{'1': {'extname': 'SCI',
'extver': 1,
'filename': '/Users/sosey/ssb/imexam/iabf01bzq_flt.fits',
'iscube': False,
'mef': True,
'naxis': 0,
'numaxis': 2,
'user_array': None}}

grab(): Take a snapshop of the image view

grid(on=True, param=False): Turn a grid on and off in the window

hideme(): Reduce the precedence of the window

iscube(): Boolean return if the image is multidimensional cube

load_fits(fname=”“, extver=1, extname=None): Load a fits image into the current frame. fname can be a filename
or a fits HDU

load_mef_as_cube(filename=None): Load a Mult-Extension-Fits image into one frame as an image cube

load_mef_as_multi(filename=None): Load a Mult-Extension-Fits image into multiple frames

load_region(filename): Load regions from a file which uses standard formatting

load_rgb(red, green, blue, scale=False, lockwcs=False): Load three images into an RGB colored frame

make_region(infile,doLabels=False): Make an input reg file which contains rows with “x,y,comment” into a region
file that the DS9 viewer recognizes.

infile: str input filename

labels: bool add labels to the regions

header: int number of header lines in text file to skip

textoff: int offset in pixels for labels

rtype: str region type, one of the acceptable DS9 regions

size: int size of the region type

Here's what the input file 'test' looks like:

100,100, 1
200,200, 2
300,300, comment 3

viewer.make_region('test',labels=True)

And the output region file:

image; circle(100,100,5)
image;text(110.0,110.0{ 1 })# font="time 12 bold"
image; circle(200,200,5)
image;text(210.0,210.0{ 2 })# font="time 12 bold"
image; circle(300,300,5)
image;text(310.0,310.0{ comment 3 })# font="time 12 bold"

6.2. imexam User Methods 45

imexam Documentation, Release 0.1.dev55+gef728ae

Now let’s load the region file into our image:

mark_region_from_array(input_points,rtype=”circle”,ptype=”image”,textoff=10,size=5): mark regions on the
display given a list of tuples, a single tuple, or a string, where each object has x,y,comment specified

input_points: an iterable contains: (x,y,comment) tuples

ptype: string the reference system for the point locations, image|physical|fk5

rtype: string the matplotlib style marker type to display

size: int the size of the region marker

textoff: string the offset for the comment text, if comment is empty it will not show

locations=list()
locations.append((100,100,1))
locations.append((200,200,2))

(continues on next page)

46 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

locations.append((300,300,'comment 3'))

viewer.mark_region_from_array(locations)

match(coordsys=”wcs”, frame=True, crop=False, fslice=False,

scale=False, bin=False, colorbar=False, smooth=False, crosshair=False):

Match all other frames to the current frame

nancolor(color=’red’): Set the not-a-number color

panto_image(x, y): Convenience function to change to x,y physical image coordinates

panto_wcs(x, y, system=’fk5’): Pan to the wcs location in the image

readcursor(): Returns image coordinate postion and key pressed as a tuple of the for float(x), float(y), str(key).

6.2. imexam User Methods 47

imexam Documentation, Release 0.1.dev55+gef728ae

In [1]: viewer.readcursor()
Out[2]: (56.0, 28.333333, 'a')

or with a click of the first mouse button

In [1]: viewer.readcursor()
Out[2]: (67.333333, 80.0, '<1>')

reopen(): Reopen a closed viewing window, mostly used for ginga windows right now

rotate(value=None, to=False): Rotate the current frame (in degrees)

save_regions(filename=None): Save the regions currently displayed in the window to a regions file

save_rgb(filename=None): Save an rgbimage frame as an MEF fits file

scale(scale=’zscale’): Scale the pixel values in the window, zscale is the default

set_region(region_string): Use this to send the DS9 viewer a formatted region string it’s expecting

For example, in DS9:

viewer.set_region("text 110.0 110.0 '1' #font=times")

See the DS9 XPA documentation for more examples.

show_xpa_commands(): Print the available XPA commands (DS9 only)

showme(): Raise the precedence of the viewing window

showpix(): Display a pixel value table

snapsave(filename=None, format=None, resolution=100): Create a snapshot of the current window in the specified
format

valid_data_in_viewer(): Return bool if valid file or array is loaded into the viewer

view(img, header=None, frame=None, asFits=False): Load an image array into the image viewing frame, if no
frame is specified, the current frame is used. If no frame exists, then a new one is created. A basic header is
created and sent to DS9. You can look at this header with disp_header() but get_header() will return an error
because it looks for a filename, and no file was loaded, just the array.

image_array=fits.getdata('image.fits')
viewer.view(image_array)

or

image_array=numpy.ones([100,100])*numpy.random.rand(100)
viewer.view(image_array)

zoom(par=None): Zoom using the specified command in par

zoomtofit(): Zoom the image to fit the window

setlog(self, filename=None, on=True, level=logging.DEBUG): Turn on and off imexam logging to the a file. You
can set the filename to something specific or let the package record to the default logfile. Once you give the
object a logfile name, it will continue to use that file until you change it.

In [5]: viewer.setlog()
Saving ``imexam`` commands to imexam_log.txt

48 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

This is what’s displayed in the terminal when you use imexam():

and this is what shows up in the logfile:

6.2. imexam User Methods 49

imexam Documentation, Release 0.1.dev55+gef728ae

You can see there are some leftovers from a previous logging session to the same file. You can toggle logging during
a session too:

viewer.setlog(on=False)

#and to turn off even messages to the screen:

viewer.setlog(on=False,level=logging.CRITICAL)

unlearn(): Reset all the imexam default function parameters

plotname(): change or show the default save plotname for imexamine

In [1]: viewer.plotname()
imexam_plot.pdf

In [2]: viewer.plotname('myplot.jpg')
In [3]: viewer.plotname()
myplot.jpg

The extension of the filename controls the plot type.

display_help(): Display the help documentation into a webpage from the locally installed version. This is done from
the main package:

50 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

In [1]: import imexam

In [2]: imexam.display_help()

6.3 Convenience functions for DS9’s (XPA) commands

Note: The full list of XPA access points can be found at: http://ds9.si.edu/doc/ref/xpa.html and XPA itself is main-
tained here https://github.com/ericmandel/xpa

If there is no convenience function for an access point that you would like to use, you can still call it using the
imexam hooks into the xpa GET and SET functions. They are aliased to your object (for example “window”) as
window.window.xpa.get() or window.window.xpa.set()

alignwcs (on=True): align loaded images by wcs,

blink (blink=None,interval=None): blink frames

clear_contour (): clear contours from the screen

cmap (color=None,load=None,invert=False,save=False, filename=’colormap.ds9’): set the color map of the cur-
rent frame The available maps are “heat”,”grey”,”cool”,”aips0”,”a”,”b”,”bb”,”he”,”i8”

color: string color must be set to one of the available DS9 color map names

load: string, optional set to the filename which is a valid colormap lookup table valid contrast values are from
0 to 10, and valid bias values are from 0 to 1

invert: bool, optional invert the colormap

save: bool, optional save the current colormap as a file

filename: string, optional the name of the file to save the colormap to

colorbar (on=True): turn the colorbar at the bottom of the screen on and off

contour (on=True, construct=True): on: Set to true to turn on contours

construct: optional Will open the contour dialog box which has more options

contour_load (filename): load contours into the window from the specified filename

crosshair (x=none,y=none,coordsys=”physical”,skyframe=”wcs”,skyformat=”fk5”,match=False,lock=False):
control the current position of the crosshair in the current frame, crosshair mode is turned on

x: string or int The value of x is converted to a string for the call to XPA, use a value here appropriate for the
skyformat you choose

y: string or int The value of y is converted to a string for the call to XPA, use a value here appropriate for the
skyformat you choose

coordsys: string, optional The coordinate system your x and y are defined in

skyframe: string, optional If skyframe has “wcs” in it then skyformat is also sent to the XPA

skyformat: string, optional Used with skyframe, specifies the format of the coordinate which were given in x
and y

match: bool, optional If set to True, then the wcs is matched for the frames

lock: bool, optional If set to True, then the frame is locked in wcs

6.3. Convenience functions for DS9’s (XPA) commands 51

http://ds9.si.edu/doc/ref/xpa.html
https://github.com/ericmandel/xpa

imexam Documentation, Release 0.1.dev55+gef728ae

cursor (x=None,y=None): move the cursor in the current frame to the specified image pixel, it will also move selected
regions

disp_header (): display the current header using the ds9 header display window

frame (n=None): convenience function to switch frames or load a new frame (if that number does not already exist)

n: int, string, optional The frame number to open or change to. If the number specified doesn’t exist, a new
frame will be opened If nothing is specified, then the current frame number will be returned. The value of
n is converted to a string before passing to the XPA

frame(1) sets the current frame to 1 frame(“last”) set the current frame to the last frame frame() returns the
number of the current frame frame(“new”) opens a new frame frame(3) opens frame 3 if it doesn’t exist already,
otherwise goes to frame 3

get_header (): return the header of the current extension as a string, or None if there’s a problem

grid (on=True, param=False): turn the grid on and off if param is True, then a diaglog is opened for the grid param-
eters

hideme (): lower the ds9 window on your display

load_fits (fname=None, extname=1, extver=’SCI’): load a fits image to the current frame. You provide just the
name, or either of the extname or extver, or you can specify the extension with the filename string. For example:

load_fits(‘something.fits’,extver=’SCI’) will load the SCI,1 extension

load_fits(‘something.fits[SCI,1]’) will load the SCI,1 extension

load_fits(‘something.fits’) will load the main data extension; the only data information in the case of
simple fits, or the first extension in the case of a multiextension file

load_region (filename): load the specified DS9 formatted region filename

load_rgb (red, green, blue,scale=False, lockwcs=False): load 3 images into an RGBimage frame, the parameters
are:

red: string, The name of the fits file which will be loaded into the red channel

green: string, The name of the fits file which will be loaded into the green
→˓channel

blue: string, The name of the fits file which will be loaded into the blue channel

scale: bool, If True, then each image will be scale with zscale() after loading

lockwcs: bool, If True, then the image positions will be locked to each other
→˓using the WCS information in their headers

load_mef_as_cube (filename=None): Load a Mult-Extension-Fits image into one frame as an image cube in the
image viewer

load_mef_as_multi (filename=None): Load a Mult-Extension-Fits image into multiple frames in the image viewer

match (coordsys=”physical”,frame=False,crop=False,fslice=False,scale=False,bin=False,colorbar=False,smooth=False,crosshair=False):
match all other frames to the current frame using the specified option. You can only choose one of the options
at a time, so set frame=False and something else in addition to your choice if you don’t want the default option.

coordsys: string, optional The coordinate system to use

frame: bool, optional Match all other frames to the current frame, using the set coordsys

crop: bool, optional Set the current image display area, using the set coordsys

fslice: bool, optional Match current slice in all frames

52 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

scale: bool, optional Match to the current scale for all frames

bin: bool, optional Match to the current binning for all frames

colorbar: bool, optional Match to the current colorbar for all frames

smooth: bool, optional Match to the current smoothing for all frames

crosshair: bool, optional Match the crosshair in all frames, using the current coordsys

nancolor (color=”red”): set the not-a-number color, default is red

panto_image (x, y) convenience function to change to x,y images coordinates using ra,dec

panto_wcs (x, y,system=’fk5’): pan to the wcs coordinates in the image using the specified system

x: string The x location to move to, specified using the given system

y: string The y location to move to

system: string The reference system that x and y were specified in, they should be understood by DS9

rotate (value, to=False):

value: float [degrees] Rotate the current frame {value} degrees If value is 0, then the current rotation is printed

to: bool Rotate the current frame to the specified value instead

save_header (filename=None): save the header of the current image to a file

save_rgb (filename=None): save an rgbimage frame as an MEF fits file

save_regions (filename=None): Save the regions in the current window to a DS9 style regions file

filename: string The nameof th file to which the regions displayed in the current window are saved If no
filename is provided then it will try and save the regions to the name of the file in the current display with
_regions.txt appended

If a file of that name already exists on disk it will no attempt to overwrite it

scale (scale=’zscale’): Scale the image on display. The default zscale is the most widely used option:

Syntax

scales available: [linear|log|pow|sqrt|squared|asinh|sinh|histequ]

[log exp <value>]
[datasec yes|no]
[limits <minvalue> <maxvalue>]
[mode minmax|<value>|zscale|zmax]
[scope local|global]
[match]
[lock [yes|no]]
[open|close]

set_region (region_string): display a region using the specifications in region_string example: set_region(“physical;
ruler 200 300 200 400”)

showme (): raise the ds9 display window

showpix (): display the pixel value table

snapsave (filename,format=None,resolution=100): create a snap shot of the current window and save in specified
format. If no format is specified the filename extension is used

6.3. Convenience functions for DS9’s (XPA) commands 53

imexam Documentation, Release 0.1.dev55+gef728ae

filename: str, optioan filename of output image, the extension in the filename can also be used to
specify the format If no filename is specified, then the filename will be constructed from the
name of the currently displayed image with _snap.jpg appended.

format: str, optional available formats are fits, eps, gif, tiff, jpeg, png If no format is specified the
filename extension is used

resolution: int, optional 1 to 100, for jpeg images

zoom (par=”to fit”):

par: string it can be a number (ranging 0.1 to 8), and successive calls continue zooming in the same direction
it can be two numbers ‘4 2’, which specify zoom on different axis if can be to a specific value ‘to 8’ or ‘to
fit’, “to fit” is the default it can be ‘open’ to open the dialog box it can be ‘close’ to close the dialog box
(only valid if the box is already open)

zoomtofit (): zoom to the best fit for the display window

6.4 Example 1

Note: More examples in the form of Jupyter notebooks can be downloaded from the git repository and are contained
in the “example_notebooks” directory.

6.4.1 Basic Usage

First you need to import the package

import imexam

6.4.2 Usage with D9 (the current default viewer)

If you are on a windows system, and DS9 is not be available, move on to the Ginga specification.

Start up a DS9 window (by default), a new DS9 window will be opened, open a fits image, and scale it:

viewer=imexam.connect()
viewer.load_fits('iacs01t4q_flt.fits')
viewer.scale()

54 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

If you already have a window running, you can ask for a list of windows; windows that you start from the imexam
package will not show up, this is to keep control over their processes and prevent double assignments.

This will display if you've used the default command above and have no other DS9
→˓windows open
In [1]: imexam.list_active_ds9()
No active sessions registered
Out[2]: {}

open a window in another process
In [3]: !ds9&
In [4]: imexam.list_active_ds9()
DS9 ds9 gs /tmp/xpa/DS9_ds9.60457 sosey
Out[5]: {'/tmp/xpa/DS9_ds9.60457': ('ds9', 'sosey', 'DS9', 'gs')}imexam.list_active_
→˓ds9()
DS9 ds9 gs 82a7e75f:57222 sosey

6.4. Example 1 55

imexam Documentation, Release 0.1.dev55+gef728ae

You can attach to a current DS9 window by specifying its unique name

viewer1=imexam.connect('ds9')

If you haven’t given your windows unique names using the -title <name> option from the commandline, then
you must use the ip:port address:

viewer=imexam.connect('82a7e75f:57222')

6.4.3 Usage with Ginga viewer

Start up a ginga window using the HTML5 backend and display the same image as above. Make sure that you have
installed the most recent version of ginga, imexam will return an error that the viewer cannot be found otherwise.:

viewer=imexam.connect(viewer='ginga')
viewer.load_fits()

Note: All commands after your chosen viewer is opened are the same. Each viewer also has it’s own set of commands
which you can additionally use. You may use any viewer for the examples which follow.

56 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

Load a fits image into the window:

viewer.load_fits('test.fits')

Scale the image to the default scaling, which is a zscale algorithm, but the viewers other scaling options are also
available:

viewer.scale()
viewer.scale('asinh') <-- uses asinh

Change to heat map colorscheme:

viewer.cmap(color='heat')

Make some marks on the image and save the regions using a DS9 style regions file:

viewer.save_regions('test.reg')

Delete all the regions you made, then load from file:

viewer.load_regions('test.reg')

Plot stuff at the cursor location, in a while loop. Type a key when the mouse is over your desired location and continue
plotting with the available options:

viewer.imexam()

Quit out and delete windows and references, for the ginga HTML5 window, this will not close the browser window
with the image display, you’ll need to exit that manually. However, if you’ve accidentally closed that window you can
reopen and reconnect to the server:

viewer.close()
viewer.reopen()

6.5 Example 2

6.5.1 Aperture Photometry

• Perform manual aperture photometry on supplied image

• Make curve of growth and radial profile plots

• Save the profile data and plot to files.

Method 1

Assuming we’ve already connected to the window where the data is displayed:

• This method first uses the “a” key to check out the aperture photometry with the default settings

• Display a radial profile “r” plot around the start we choose

• Look at the curve of growth “g” plot

• Make a new profile plot, print the plotted points to the screen, and save a copy of the plotting window for
reference

6.5. Example 2 57

imexam Documentation, Release 0.1.dev55+gef728ae

Here a picture of the area I’m looking at on my desktop:

If you wanted to save a screenshot of the viewer display you can use viewer.grab(), in DS9 this will save a snap of the
whole DS9 window for reference:

58 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

Now let’s start up the imexam() loop and look at a plot of star:

viewer.imexam() #start an imexam session

Use the “r” and “g” keys to look at the radial profile and growth curves:

Note that part of the screen information that’s returned includes the flux and radii information:

6.5. Example 2 59

imexam Documentation, Release 0.1.dev55+gef728ae

Let’s take this information and set the radii for our quick aperture photometry:

In [1]: viewer.aimexam()
Out[2]:
{'center': [True, 'Center the object location using a 2d gaussian fit'],
'function': ['aper_phot'],
'radius': [5, 'Radius of aperture for star flux'],
'skyrad': [15, 'Distance to start sky annulus is pixels'],
'subsky': [True, 'Subtract a sky background?'],
'width': [5, 'Width of sky annulus in pixels'],
'zmag': [25.0, 'zeropoint for the magnitude calculation']}

In [3]: viewer.set_plot_pars('a','radius',4)
set aper_phot_pars: radius to 4

In [4]: viewer.set_plot_pars('a','skyrad',8)
set aper_phot_pars: skyrad to 8

In [23]: viewer.imexam()

Press 'q' to quit

2 Make the next plot in a new window
a Aperture sum, with radius region_size
b Return the 2D gauss fit center of the object
c Return column plot
e Return a contour plot in a region around the cursor
g Return curve of growth plot
h Return a histogram in the region around the cursor
j 1D [Gaussian1D default] line fit
k 1D [Gaussian1D default] column fit
l Return line plot
m Square region stats, in [region_size],default is median
r Return the radial profile plot
s Save current figure to disk as [plot_name]
t Make a fits image cutout using pointer location
w Display a surface plot around the cursor location

(continues on next page)

60 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

x Return x,y,value of pixel
y Return x,y,value of pixel
Current image /Users/sosey/test_images/iacs01t4q_flt.fits

gauss_center
xc=462.827108 yc=377.705312

aper_phot
x y radius flux mag(zpt=25.00) sky fwhm
462.83 377.71 4 1686.24 16.93 0.92 1.71

Just for some more information on the star, below is the gaussian fit “j” to the columns of the same star.

Method 2

Assuming we’ve already connected to the DS9 window where the data is displayed:

• First we turn on logging so that everything gets saved to a file

• We then use the “a” key to check out the aperture photometry with the default settings

• Use the “g” to look at the curve of growth

• Adjust the aperture photometry with our our own settings

• We can then use the log file, to create a plot

In [1]: viewer.setlog('mystar.log')
Saving imexam commands to mystar.log

(continues on next page)

6.5. Example 2 61

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

In [2]: viewer.unlearn()

In [3]: viewer.imexam()

Press 'q' to quit

2 Make the next plot in a new window
a Aperture sum, with radius region_size
b Return the 2D gauss fit center of the object
c Return column plot
e Return a contour plot in a region around the cursor
g Return curve of growth plot
h Return a histogram in the region around the cursor
j 1D [Gaussian1D default] line fit
k 1D [Gaussian1D default] column fit
l Return line plot
m Square region stats, in [region_size],default is median
r Return the radial profile plot
s Save current figure to disk as [plot_name]
t Make a fits image cutout using pointer location
w Display a surface plot around the cursor location
x Return x,y,value of pixel
y Return x,y,value of pixel
Current image /Users/sosey/test_images/iacs01t4q_flt.fits

xc=462.938220 yc=377.260860
x y radius flux mag(zpt=25.00) sky fwhm
462.94 377.26 5 1739.97 16.90 0.72 1.44

at (x,y)=462,377
radii:[1 2 3 4 5 6 7 8]
flux:[406.65712375514534, 1288.8955810496341, 1634.0235081082126,
1684.5579429185905, 1718.118845192796, 1785.265260722455,
1801.8561084128257, 1823.21222063562]

Lets get some more aperture photometry at larger radii by resetting some of the “a” key values::

In [4]: viewer.set_plot_pars("a","radius",4)
set aper_phot_pars: radius to 4

In [5]: viewer.set_plot_pars("a","skyrad",8)
set aper_phot_pars: skyrad to 8

In [5]: viewer.imexam() #use the "a" key

xc=463.049330 yc=377.038640
x y radius flux mag(zpt=25.00) sky fwhm
463.05 377.04 4 1679.23 16.94 0.93 1.71

This is what mystar.log contains, you can parse the log, or copy the data and use as you like to make interesting plots
later or just have for reference.:

gauss_center
xc=462.938220 yc=377.260860

aper_phot

(continues on next page)

62 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

x y radius flux mag(zpt=25.00) sky fwhm
462.94 377.26 5 1739.97 16.90 0.72 1.44

gauss_center
xc=462.827110 yc=377.371969

gauss_center
xc=462.827109 yc=377.260860

gauss_center
xc=462.827109 yc=377.260860

curve_of_growth

at (x,y)=462,377
radii:[1 2 3 4 5 6 7 8]
flux:[406.65712375514534, 1288.8955810496341, 1634.0235081082126,
1684.5579429185905, 1718.118845192796, 1785.265260722455,
1801.8561084128257, 1823.21222063562]

gauss_center
xc=463.049330 yc=377.038640

aper_phot
x y radius flux mag(zpt=25.00) sky fwhm
463.05 377.04 4 1679.23 16.94 0.93 1.71

6.6 Example 3

6.6.1 Advanced Usage - Interact with Daophot and Astropy

While the original intent for the imexam module was to replicate the realtime interaction of the old IRAF imexamine
interface with data, there are other possibilities for data analysis which this module can support.One such example,
performing more advanced interaction which can be scripted, is outlined below, using familiar IRAF tasks.

Note: You can see a similar photometry example which uses photutils and it’s implementation of DAOPhot
aperture photometry instead of IRAF in the imexam_ds9_photometry example jupyter notebook.

If you have a list of source identifications, perhaps prepared by SExtractor, DAOFind, Starfind or a similar program,
you can use imexam to display the science image and overlay apertures for all their locations. From there you can do
some visual examination and cleaning up of the list with a combination of region manipulation and useful imexam
methods.

Here’s our example image to work with, which is a subsection of a larger image:

6.6. Example 3 63

https://github.com/spacetelescope/imexam/blob/master/example_notebooks/imexam_ds9_photometry.ipynb

imexam Documentation, Release 0.1.dev55+gef728ae

I’ll use the IRAF DAOFind to find objects in my field:

from pyraf import iraf
from iraf import noao,digiphot,daophot
from astropy.io import fits

image='iabf01bzq_flt.fits'

fits.info('iabf01bzq_flt.fits')

Filename: iabf01bzq_flt.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 210 () int16
1 SCI ImageHDU 81 (1014, 1014) float32
2 ERR ImageHDU 43 (1014, 1014) float32
3 DQ ImageHDU 35 (1014, 1014) int16

(continues on next page)

64 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

4 SAMP ImageHDU 30 () int16
5 TIME ImageHDU 30 () float32

#set up some finding parameters, you can make this more explicit
iraf.daophot.findpars.threshold=3.0 #3sigma detections only
iraf.daophot.findpars.nsigma=1.5 #width of convolution kernal in sigma
iraf.daophot.findpars.ratio=1.0 #ratio of gaussian axes
iraf.daophot.findpars.theta=0.
iraf.daophot.findpars.sharplo=0.2 #lower bound on feature
iraf.daophot.findpars.sharphi=1.0 #upper bound on feature
iraf.daophot.findpars.roundlo=-1.0 #lower bound on roundness
iraf.daophot.findpars.roundhi=1.0 #upper bound on roundness
iraf.daophot.findpars.mkdetections="no"

In [84]: iraf.lpar(iraf.daophot.datapars)
(scale = 1.0) Image scale in units per pixel

(fwhmpsf = 2.5) FWHM of the PSF in scale units
(emission = yes) Features are positive?

(sigma = 1.0) Standard deviation of background in counts
(datamin = 0.0) Minimum good data value
(datamax = INDEF) Maximum good data value

(noise = "poisson") Noise model
(ccdread = "") CCD readout noise image header keyword

(gain = "ccdgain") CCD gain image header keyword
(readnoise = 2.0) CCD readout noise in electrons

(epadu = 1.0) Gain in electrons per count
(exposure = "exptime") Exposure time image header keyword
(airmass = "") Airmass image header keyword
(filter = "") Filter image header keyword

(obstime = "") Time of observation image header keyword
(itime = 1.0) Exposure time

(xairmass = INDEF) Airmass
(ifilter = "INDEF") Filter

(otime = "INDEF") Time of observation
(mode = "ql")

iraf.daophot.datapars.datamin=0.
iraf.daophot.datapars.gain="ccdgain"
iraf.daophot.datapars.exposure="exptime"
iraf.daophot.datapars.sigma=105.

#assume the science extension and find some stars
sci="[SCI,1]"
output_locations='iabf01bzq_stars.dat'
iraf.daofind(image=image+sci,output=output_locations,interactive="no",verify="no",
→˓verbose="no")

#This is just the top of the file that daofind produced:

In [24]: more iabf01bzq_stars.dat
#K IRAF = NOAO/IRAFV2.16 version %-23s
#K USER = sosey name %-23s
#K HOST = intimachay.stsci.edu computer %-23s
#K DATE = 2014-03-28 yyyy-mm-dd %-23s

(continues on next page)

6.6. Example 3 65

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

#K TIME = 15:34:56 hh:mm:ss %-23s
#K PACKAGE = apphot name %-23s
#K TASK = daofind name %-23s
#
#K SCALE = 1. units %-23.7g
#K FWHMPSF = 2.5 scaleunit %-23.7g
#K EMISSION = yes switch %-23b
#K DATAMIN = 0. counts %-23.7g
#K DATAMAX = INDEF counts %-23.7g
#K EXPOSURE = exptime keyword %-23s
#K AIRMASS = "" keyword %-23s
#K FILTER = "" keyword %-23s
#K OBSTIME = "" keyword %-23s
#
#K NOISE = poisson model %-23s
#K SIGMA = 105. counts %-23.7g
#K GAIN = ccdgain keyword %-23s
#K EPADU = 2.5 e-/adu %-23.7g
#K CCDREAD = "" keyword %-23s
#K READNOISE = 0. e- %-23.7g
#
#K IMAGE = iabf01bzq_flt.fits[SCI, imagename %-23s
#K FWHMPSF = 2.5 scaleunit %-23.7g
#K THRESHOLD = 3. sigma %-23.7g
#K NSIGMA = 2. sigma %-23.7g
#K RATIO = 1. number %-23.7g
#K THETA = 0. degrees %-23.7g
#
#K SHARPLO = 0.2 number %-23.7g
#K SHARPHI = 1. number %-23.7g
#K ROUNDLO = -1. number %-23.7g
#K ROUNDHI = 1. number %-23.7g
#
#N XCENTER YCENTER MAG SHARPNESS SROUND GROUND ID \
#U pixels pixels # # # # # \
#F %-13.3f %-10.3f %-9.3f %-12.3f %-12.3f %-12.3f %-6d \
#

194.694 2.357 -3.335 0.919 0.141 -0.004 1
232.659 2.889 -1.208 0.768 0.572 -0.289 2
237.782 2.925 -1.182 0.669 0.789 -0.971 3
265.715 2.797 -1.395 0.976 -0.450 -0.669 4
419.792 2.902 -3.045 0.925 -0.990 0.213 5
424.566 3.081 -1.202 0.923 0.513 -0.555 6
534.758 2.856 -1.341 0.659 -0.676 -0.302 7
580.964 2.485 -1.326 0.821 -0.489 -0.752 8
587.521 3.568 -1.282 0.911 -0.537 -0.119 9
725.016 3.999 -1.103 0.714 -0.653 -0.490 10
736.495 2.808 -1.345 0.710 -0.996 -0.730 11
746.529 3.200 -0.868 0.303 -0.376 -0.682 12
757.672 3.172 -1.527 0.420 0.271 0.211 13
768.768 2.830 -1.321 0.741 -0.842 -0.252 14
799.199 2.696 -2.096 0.926 0.476 -0.511 15
807.575 2.445 -4.136 0.745 0.171 -0.131 16
836.661 2.790 -1.482 0.709 0.205 0.636 17
879.390 3.069 -1.018 0.549 -0.479 -0.495 18
912.820 2.806 -1.414 0.576 0.504 0.109 19
938.794 3.448 -1.731 0.997 -0.239 0.100 20

(continues on next page)

66 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

17.713 2.731 -1.896 0.286 -0.947 -0.359 21
48.757 2.755 -1.172 0.586 0.646 -0.543 22
105.894 3.030 -1.700 0.321 -0.233 -0.006 23

Now we want to read in the file that Daofind produced and save the x,y and ID information. I’m going to read the
results using astropy.io.ascii

reader=ascii.Daophot()
photfile=reader.read(output_locations)

#some quick information on what we have now
photfile.colnames

['XCENTER', 'YCENTER', 'MAG', 'SHARPNESS', 'SROUND', 'GROUND', 'ID']

photfile.print()

In [103]: photfile.pprint()
XCENTER YCENTER MAG SHARPNESS SROUND GROUND ID

------------- ---------- --------- ------------ ------------ ------------ ------
194.694 2.357 -3.335 0.919 0.141 -0.004 1
232.659 2.889 -1.208 0.768 0.572 -0.289 2
237.782 2.925 -1.182 0.669 0.789 -0.971 3
265.715 2.797 -1.395 0.976 -0.450 -0.669 4
419.792 2.902 -3.045 0.925 -0.990 0.213 5
424.566 3.081 -1.202 0.923 0.513 -0.555 6
534.758 2.856 -1.341 0.659 -0.676 -0.302 7
580.964 2.485 -1.326 0.821 -0.489 -0.752 8
587.521 3.568 -1.282 0.911 -0.537 -0.119 9
725.016 3.999 -1.103 0.714 -0.653 -0.490 10
736.495 2.808 -1.345 0.710 -0.996 -0.730 11
746.529 3.200 -0.868 0.303 -0.376 -0.682 12
757.672 3.172 -1.527 0.420 0.271 0.211 13
768.768 2.830 -1.321 0.741 -0.842 -0.252 14
799.199 2.696 -2.096 0.926 0.476 -0.511 15
807.575 2.445 -4.136 0.745 0.171 -0.131 16

You can even pop this up in your web browser if that’s a good format for you: photfile.show_in_browser().
imexam has several functions to help display regions on the DS9 window. Since we have this data loaded into
memory, the one we will use here is mark_region_from_array().

Let’s make an array that the method will accept, namely a list of tuples which contain the (x,y,comment) that we want
marked to the display. It will also accept any iterator containing a tuple of (x,y,comment).

#lets make a list of our locations as a tuple of x,y,comment
#we'll cut the list to a smaller area and only include those points whose mag is < -4.
locations=list()
for point in range(0,len(photfile['XCENTER']),1):

if photfile['MAG'][point] < -4:
locations.append((photfile['XCENTER'][point],photfile['YCENTER'][point],

→˓photfile['ID'][point]))

#so the first item looks like:
In [91]: locations[0]
Out[91]: (807.57500000000005, 2.4449999999999998, 16)

Let’s open up a DS9 window (if you haven’t already) and display your image. This will let us display our source

6.6. Example 3 67

imexam Documentation, Release 0.1.dev55+gef728ae

locations and play with them

viewer=imexam.connect()
viewer.load_fits('iabf01bzq_flt.fits')
viewer.scale() #scale to DS9 zscale by default
viewer.mark_region_from_array(locations)

Now we can get rid of some of the stars by hand and save a new file of locations we like. I did this arbitrarily because
I decided I didn’t like stars in this part of space. Click on the regions you don’t want and delete them from the screen.
You can even add more regions of your own choosing.

68 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

You can save these new regions to a DS9 style region file, either through DS9 or imexam

viewer.save_regions('badstars.reg')

Note: A future version of the imexam package will make use of the region interpreter currently being developed
with astropy for smoother creation and use of parsable regions files

Here is what the saved region file looks like, you can choose to import this file into any future DS9 display of the same
image using the viewer.load_regions() method. You might also want to parse the file to save just the location
and comment information in a separate text file.

In [7]: !head badstars.reg
Region file format: DS9 version 4.1
Filename: /Users/sosey/ssb/sosey/testme/iabf01bzq_flt.fits[SCI]
global color=green dashlist=8 3 width=1 font="helvetica 10 normal roman" select=1
→˓highlite=1 dash=0 fixed=0 edit=1 move=1 delete=1 include=1 source=1
fk5
circle(0:22:38.709,-72:02:50.58,0.677464")
text(0:22:39.097,-72:02:50.86) font="time 12 bold" text={ 16 }
circle(0:22:36.340,-72:02:58.27,0.677464")
text(0:22:36.729,-72:02:58.55) font="time 12 bold" text={ 140 }
circle(0:22:29.068,-72:03:20.78,0.677464")
text(0:22:29.457,-72:03:21.06) font="time 12 bold" text={ 225 }

. . .

text(0:22:56.855,-72:04:23.16) font="time 12 bold" text={ 21985 }
circle(0:22:42.791,-72:05:04.04,0.677464")

(continues on next page)

6.6. Example 3 69

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

text(0:22:43.180,-72:05:04.32) font="time 12 bold" text={ 22002 }
box(0:22:45.694,-72:04:19.19,14.593",13.1774",149.933) # color=red font="helvetica 16
→˓normal roman" text={I DONT LIKE THE STARS HERE}

6.6.2 Advanced Usage II - Cycle through objects from a list

This example will step through a list of object locations and center that object in the DS9 window with a narrow zoom
so that you can examine it further (think about PSF profile creation options here..)

If you haven’t already, start DS9 and load your image into the viewer. I’ll assume that you started DS9 outside of
imexam and will need to connect to the window first.

import imexam
imexam.list_active_ds9()

DS9 1396283378.28 gs 82a7e75f:53892 sosey

viewer=imexam.connect('82a7e75f:53892')

#A little unsure this is the correct window? Let's check by asking what image is
→˓loaded. The image I'm working with is iabf01bzq_flt.fits

viewer.get_filename()

'/Users/sosey/ssb/sosey/testme/iabf01bzq_flt.fits' <-- notice it returned the
→˓full pathname to the file

viewer.zoomtofit() <-- let's zoom out to see the whole image, incase just a small
→˓section was loaded

Read in your list of object locations, I’ll use the same DAOphot targets from the previous example

from astropy.io import ascii
reader=ascii.Daophot()
output_locations='iabf01bzq_stars.dat'
photfile=reader.read(output_locations)

#make some cuts on the list

locations=list()
for point in range(0,len(photfile['XCENTER']),1):

if photfile['MAG'][point] < -4:
locations.append((photfile['XCENTER'][point],photfile['YCENTER'][point],

→˓photfile['ID'][point])) <-- appending tuple to the list

Take your list of locations and cycle through each one, displaying a zoomed in section on the DS9 window and starting
imexam for each coordinate. I’m just going to go through 10 or so random stars. You can set this up however you
like, including using a keystroke as your stopping condition in conjunction with viewer.readcursor()

I’ll also mark the object we’re interested in on the display for reference

viewer.zoom(8)
for object in locations[100:110]:

viewer.panto_image(object[0],object[1])
viewer.mark_region_from_array(object)
viewer.imexam()

70 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

6.7 Example 4

6.7.1 Load and examine an image CUBE

Note: image cubes are currently only supported for the DS9 viewer.

Image cubes can be multi-extension fits files which have multidimensional (> 2) images in any of their extensions.
When they are loaded into DS9, a cube dialog frame is opened along with a box which allows the user to control which
slices are displayed. Here’s what the structure of such a file might look like:

astropy.io.fits.info('test_cube.fits')

Filename: test_cube.fits
No. Name Type Cards Dimensions Format
0 PRIMARY PrimaryHDU 215 ()
1 SCI ImageHDU 13 (1032, 1024, 35, 5) int16
2 REFOUT ImageHDU 13 (258, 1024, 35, 5) int16

You can use all the regular imexam methods with this image, including imexam() and the current slice which you have
selected will be used for analysis. You can also ask imexam which slice is display, or the full image information of
what is in the current frame for your own use (ds9 is just the name I chose, you can call the control object connected
to your display window anything)

viewer=imexam.connect()
viewer.load_fits('test_cube.fits')
viewer.window.get_filename()

Out[24]: '/Users/sosey/ssb/imexam/test_cube.fits'

viewer.window.get_frame_info()
Out[25]: '/Users/sosey/ssb/imexam/test_cube.fits[SCI,1](0, 0)'

Now I’m going to use the Cube dialog to change the slice I’m looking at to (4,14) -> as displayed in the dialog. DS9
displayed 1-indexed numbers, and the fits utitlity behind imexam uses 0-indexed numbers, so expect the return to be
off by a value of 1.

Let’s ask for the information again:

In [26]: viewer.window.get_filename()
Out[26]: '/Users/sosey/ssb/imexam/test_cube.fits'

In [27]: viewer.window.get_frame_info()
Out[27]: '/Users/sosey/ssb/imexam/test_cube.fits[SCI,1](3, 13)'

You can ask for just the information about which slice is displayed and it will return the tuple(extension n,,
extension n-1). The extensions are ordered in row-major form in astropy.io.fits:

In [28]: viewer.window.get_slice_info()
Out[28]: (3, 13)

The returned tuple contains just which 2d slice is displayed. In our cube image, which is 4D (1032, 1024, 35, 5)
== (NAXIS1, NAXIS2, NAXIS3, NAXIS4) in DS9, however in astropy.io.fits this is (5,35,1024,1032) == (NAXIS4,
NAXIS3, NAXIS2, NAXIS1)

6.7. Example 4 71

imexam Documentation, Release 0.1.dev55+gef728ae

By default, the first extension will be loaded from the cube fits file if none is specified. If you would rather see another
extension, you can load it the same as with simpler fits files:

viewer.load_fits('test_cube.fits',extname='REFOUT')

6.8 Example 5

6.8.1 Use the imexamine library standalone to create plots without viewing

It’s possible to use the imexamine library of plotting functions without loading an image into the viewer. All of the
functions take 3 inputs: the x, y, and data array. In order to access the function, first create an imexamine object:

from imexam.imexamine import Imexamine
import numpy as np

data=np.random.rand((100,100)) #create a random array thats 100x100 pixels
plots=Imexamine()

These are the functions you now have access to:

plots.aper_phot plots.contour_plot plots.histogram_plot
→˓ plots.plot_line plots.set_colplot_pars plots.set_
→˓surface_pars
plots.aperphot_def_pars plots.curve_of_growth_def_pars plots.imexam_option_
→˓funcs plots.plot_name plots.set_column_fit_pars plots.
→˓show_xy_coords
plots.aperphot_pars plots.curve_of_growth_pars plots.line_fit
→˓ plots.print_options plots.set_contour_pars plots.set_
→˓plot_name
plots.colplot_def_pars plots.curve_of_growth_plot plots.line_fit_def_
→˓pars plots.register plots.set_data plots.
→˓sleep_time
plots.colplot_pars plots.do_option plots.line_fit_pars
→˓ plots.report_stat plots.set_histogram_pars plots.
→˓surface_def_pars
plots.column_fit plots.gauss_center plots.lineplot_def_
→˓pars plots.report_stat_def_pars plots.set_line_fit_pars plots.
→˓surface_pars
plots.column_fit_def_pars plots.get_options plots.lineplot_pars
→˓ plots.report_stat_pars plots.set_lineplot_pars plots.
→˓surface_plot
plots.column_fit_pars plots.get_plot_name plots.new_plot_window
→˓ plots.reset_defpars plots.set_option_funcs plots.
→˓unlearn_all
plots.contour_def_pars plots.histogram_def_pars plots.option_descrip
→˓ plots.save_figure
plots.contour_pars plots.histogram_pars plots.plot_column
→˓ plots.set_aperphot_pars plots.set_radial_pars

To create a plot, just specify the method:

plots.plot_line(10,10,data)

produces the following plot:

72 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

You can then save the current plot using the save method:

plots.contour(10,10,data)
plots.save() # with an optional filename using filename="something.extname"

In [1]: plots.plot_name
Out[2]: 'imexam.pdf'

plots.close() # close the plot window

Where the extname specifies the format of the file, ex: jpg or pdf. A pdf file will be the default output, using the curent
self.plot_name.

6.8. Example 5 73

imexam Documentation, Release 0.1.dev55+gef728ae

Note that no name is attached to the above contour plot because we plotted a data array. When you are using the
plotting class without a viewer, you can attach any title you like by editing the plotting parameters using the dictionary
directly::

plots.contour_pars['title'][0] = "random numpy array"

74 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

6.8.2 Return information to variables without plotting

Some of the imexamine() methods are capable of returning their results as data objects. First, lets import some useful
things to use in the examples:

from astropy.io import fits
from imexam.imexamine import Imexamine

get my example data from a fits image
data=fits.getdata()

Return the fitting result for a line (the same can be done for column_fit):

In [1]: plots.line_fit(462, 377, data, genplot=False)
using model: <class 'astropy.modeling.functional_models.Gaussian1D'>
Name: Gaussian1D
Inputs: ('x',)
Outputs: ('y',)
Fittable parameters: ('amplitude', 'mean', 'stddev')
xc=462.438219 yc=377.038640
Out[1]: <Gaussian1D(amplitude=512.5638896303021, mean=462.45102207881393, stddev=-0.
→˓6638566150545719)>

I could have specified an output object here instead and saved the model object:

In [1]: results = plots.line_fit(462, 377, data, genplot=False)
using model: <class 'astropy.modeling.functional_models.Gaussian1D'>
Name: Gaussian1D

(continues on next page)

6.8. Example 5 75

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

Inputs: ('x',)
Outputs: ('y',)
Fittable parameters: ('amplitude', 'mean', 'stddev')
xc=462.438219 yc=377.038640

In [2]: results
Out[2]: <Gaussian1D(amplitude=512.5638896303021, mean=462.45102207881393, stddev=-0.
→˓6638566150545719)>

In [3]: type(results)
Out[3]:
<class 'astropy.modeling.functional_models.Gaussian1D'>
Name: Gaussian1D
Inputs: ('x',)
Outputs: ('y',)
Fittable parameters: ('amplitude', 'mean', 'stddev')

Return the radial profile data points:

In [1]: results = plots.radial_profile(462, 377, data, genplot=False)
xc=462.438220 yc=377.038640

here, results is a tuple of the radius and the flux arrays
In [2]: type(results)
Out[2]: tuple

In [3]: results
Out[3]:
(array([0.43991986, 0.56310764, 1.05652729, 1.11346785, 1.12730166,

1.18083435, 1.4387386 , 1.56225828, 1.72993907, 1.77404857,
1.83394967, 1.8756147 , 2.00971898, 2.0402282 , 2.08520709,
2.11462747, 2.43216151, 2.43852579, 2.49490037, 2.50720797,
2.56207175, 2.56811411, 2.62090222, 2.65022406, 2.73622589,
2.76432473, 2.99360832, 3.0141751 , 3.07007625, 3.09013412,
3.12919301, 3.17820187, 3.22639932, 3.27395339, 3.29213154,
3.34795643, 3.36181609, 3.41650254, 3.43843675, 3.56198995,
3.57009352, 3.59167466, 3.68924014, 3.71012829, 3.83595742,
3.89592694, 3.91565741, 3.95831886, 3.97442453, 3.98552521,
3.9971748 , 4.00099637, 4.0623451 , 4.06610542, 4.0775248 ,
4.10394097, 4.21436241, 4.25811375, 4.28708374, 4.33010037,
4.43838783, 4.53773166, 4.541146 , 4.55813187, 4.56194401,
4.58853854, 4.63205502, 4.65159003, 4.66197958, 4.67852677,
4.68183843, 4.71753044, 4.71757631, 4.78260702, 4.85229095,
4.88403989, 4.96555878, 4.98067583, 4.99306443, 4.99658806,
5.05766026, 5.06986075, 5.16561429, 5.20137031, 5.2398823 ,
5.24535309, 5.27513495, 5.30395753, 5.32716192, 5.33548947,
5.37876614, 5.3848761 , 5.43835691, 5.43870338, 5.48116519,
5.52253984, 5.52811091, 5.53651564, 5.56191459, 5.58370969,
5.59757142, 5.64425498, 5.65248702, 5.65793014, 5.78110428,
5.80777797, 5.89748546, 5.92363512, 5.94896363, 5.97744528,
5.98777194, 6.00070036, 6.03626122, 6.04170629, 6.05451954,
6.06471496, 6.09265553, 6.09993812, 6.10748513, 6.13239687,
6.16254603, 6.17042707, 6.19224411, 6.20754751, 6.22957178,
6.23733343, 6.30103604, 6.33772298, 6.43833558, 6.44070886,
6.48849245, 6.50959949, 6.51230262, 6.52146032, 6.5595647 ,
6.56189413, 6.63183044, 6.64347305, 6.65679268, 6.71458743,
6.72804634, 6.73034962, 6.73980232, 6.75327507, 6.77383526,

(continues on next page)

76 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

6.79689127, 6.82830694, 6.84864187, 6.87117266, 6.87342797,
6.8817999 , 6.94435706, 6.9488506 , 6.97513961, 6.98399121,
7.01080949, 7.08663012, 7.10837617, 7.11926989, 7.13440215,
7.19907049, 7.23120275, 7.3613401 , 7.37600509, 7.41364442,
7.41776616, 7.43206628, 7.45308634, 7.49419535, 7.50475127,
7.50650756, 7.55930201, 7.56802554, 7.60008443, 7.66481157,
7.70503555, 7.76414132, 7.81964293, 8.06920371, 8.12646314,
8.12808509, 8.15298819, 8.17548548, 8.20966328, 8.22630274,
8.25580581, 8.27314042, 8.32288269, 8.77430839, 8.8269951 ,
8.83372905, 8.86536955, 8.91032754, 8.91751826, 9.48215209,
9.56647781]),

array([408.87057495, 41.23228073, 91.90717316, 48.38606262,
112.11755371, 64.6014328 , 361.9876709 , 7.88528776,
76.15605927, 92.4905777 , 5.74170589, 8.54299355,
37.25744629, 17.17868423, 41.94879532, 29.16669464,
25.11438942, 41.24355316, 31.41527748, 2.35880852,
2.51266503, 3.61639667, 31.96870041, 47.24103928,
1.86882472, 2.25345397, 3.43679786, 2.95230484,
7.01711893, 4.25243187, 10.45163536, 15.06377506,
2.06799817, 1.55962014, 3.2355001 , 3.58886528,
4.77823544, 2.61030412, 6.15013599, 2.26734257,
3.79847336, 5.18475103, 2.02961087, 1.86825836,
2.26850033, 1.98072493, 2.40412855, 2.35658216,
2.2638216 , 1.48555958, 2.15530491, 1.40320516,
2.42260337, 3.59516048, 1.49309242, 2.70001984,
1.35936797, 2.50372696, 1.99834633, 2.1075139 ,
2.10088921, 3.91031456, 1.40116227, 1.58724546,
1.64244962, 4.27553177, 2.86458731, 2.07594514,
1.24715221, 1.55571783, 3.28257489, 1.08224833,
1.99108934, 1.28673184, 2.22391272, 2.01411462,
1.27933741, 2.57424259, 2.27977562, 1.34119225,
2.46366167, 2.04145074, 2.27879167, 3.32902098,
2.0256803 , 3.04667783, 3.214293 , 2.71672273,
1.18290937, 3.39013147, 2.61141396, 1.24552131,
2.7109127 , 1.20734 , 1.065956 , 2.0110569 ,
2.63785267, 2.08804011, 1.23607028, 1.53105474,
2.9585526 , 0.92856985, 1.70498252, 0.98702717,
3.00484014, 2.96310997, 1.10799265, 1.02301562,
2.59040713, 1.55507016, 1.1307373 , 1.46614468,
3.7729485 , 0.8989926 , 1.81300449, 1.49930847,
0.97070342, 3.58096623, 1.45315814, 1.37846851,
1.22037327, 2.02710581, 3.06499743, 1.60018504,
3.15293145, 1.34511912, 1.04039967, 0.94602752,
1.5991565 , 1.11648059, 0.90265507, 1.25119698,
1.32048595, 1.331002 , 1.26167858, 0.81102282,
0.99124312, 0.76625013, 1.42264056, 1.41574192,
1.67775941, 1.15894651, 1.19685972, 0.99676919,
1.16761708, 1.20492256, 1.09948123, 1.0989542 ,
0.92135239, 0.89912277, 1.15777898, 1.07870626,
1.32945871, 1.06859183, 0.77524334, 1.4281857 ,
1.05790067, 1.08861005, 1.03711545, 1.00277674,
1.11795783, 1.04079187, 1.77855933, 0.875655 ,
1.70616186, 0.95955884, 1.2846061 , 0.9819802 ,
1.09096873, 1.12618971, 2.52278042, 1.14947557,
2.55132389, 1.16845107, 1.0366509 , 1.03310716,
0.76811701, 0.98454052, 1.38449657, 1.41319823,
1.30402267, 1.26531458, 0.88282102, 1.33250594,

(continues on next page)

6.8. Example 5 77

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

0.86149669, 1.13119161, 0.89653128, 1.47101414,
2.82045436, 2.37812138, 0.82307637, 1.3075676 ,
1.45813155, 1.30278611, 1.60565269, 1.01857305], dtype=float32))

Return the curve of growth points:

In [1]: results = plots.curve_of_growth(462, 377, data, genplot=False)
xc=462.438220 yc=377.038640

at (x,y)=462,377
radii:[1 2 3 4 5 6 7 8]
flux:[406.65712375514534, 1288.8955810496341, 1634.0235081082126, 1684.5579429185905,
→˓1718.118845192796, 1785.265260722455, 1801.8561084128257, 1823.21222063562]

In [2]: type(results)
Out[2]: tuple

In [3]: results
Out[3]:
(array([1, 2, 3, 4, 5, 6, 7, 8]),
[406.65712375514534,
1288.8955810496341,
1634.0235081082126,
1684.5579429185905,
1718.118845192796,
1785.265260722455,
1801.8561084128257,
1823.21222063562])

the typle can be separated into it's parts
radius, flux = results

Return the histogram information as a tuple of values and bin edges:

In [1]: counts, bins = plots.histogram(462, 377, data, genplot=False)

In [2]: counts
Out[2]:
array([372, 7, 1, 1, 1, 0, 1, 3, 1, 2, 1, 2, 0,

0, 0, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0,
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0]

In [3]: bins
Out [3]:
array()[0.58091092, 4.66380756, 8.7467042 , 12.82960084,

16.91249748, 20.99539412, 25.07829076, 29.1611874 ,
33.24408404, 37.32698068, 41.40987732, 45.49277396,
49.5756706 , 53.65856725, 57.74146389, 61.82436053,
65.90725717, 69.99015381, 74.07305045, 78.15594709,
82.23884373, 86.32174037, 90.40463701, 94.48753365,
98.57043029, 102.65332693, 106.73622357, 110.81912021,

114.90201685, 118.98491349, 123.06781013, 127.15070677,
(continues on next page)

78 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

131.23360341, 135.31650005, 139.39939669, 143.48229333,
147.56518997, 151.64808661, 155.73098325, 159.81387989,
163.89677653, 167.97967317, 172.06256981, 176.14546645,
180.22836309, 184.31125973, 188.39415637, 192.47705302,
196.55994966, 200.6428463 , 204.72574294, 208.80863958,
212.89153622, 216.97443286, 221.0573295 , 225.14022614,
229.22312278, 233.30601942, 237.38891606, 241.4718127 ,
245.55470934, 249.63760598, 253.72050262, 257.80339926,
261.8862959 , 265.96919254, 270.05208918, 274.13498582,
278.21788246, 282.3007791 , 286.38367574, 290.46657238,
294.54946902, 298.63236566, 302.7152623 , 306.79815894,
310.88105558, 314.96395222, 319.04684886, 323.1297455 ,
327.21264215, 331.29553879, 335.37843543, 339.46133207,
343.54422871, 347.62712535, 351.71002199, 355.79291863,
359.87581527, 363.95871191, 368.04160855, 372.12450519,
376.20740183, 380.29029847, 384.37319511, 388.45609175,
392.53898839, 396.62188503, 400.70478167, 404.78767831,
408.87057495])

6.9 Software Dependencies

• Astropy (for some analysis functions)

• photutils (for photometry)

• matplotlib (for plotting)

• DS9 (image display - optional) * XPA: https://github.com/ericmandel/xpa

• Ginga (image display - optional)

astropy >= 1.0

python >= 2.7

numpy >= 1.7.0

photutils > 0.2 This must be installed to enable the photometry options for imexam() but it is not required

Ginga This must be installed in order to use the Ginga displays instead of DS9. Windows users who install from
source should also install Ginga if they wish to use an image viewer since the DS9 and XPA compiles will be
disabled. It’s possible to compile and install the XPA and DS9 from source, but not with typical default software.

Using ginga has the advantage that the imexam() loop is now event driven.

You can issue the viewer.imexam() command to print out the available examination command keys. The user
can then press the “i” key while the mouse is in the graphics window, all subsequent key-presses will be grabbed
without blocking your terminal command line. If you wish to turn of the imexam keys you can press either the
“i” key a second time or the “q” key. A notification message will appear on screen that imexam mode has either
started or stopped.

If you are using the Ginga HTML5 widget under python3 in the Jupyter notebook you should also install Pillow
to get the correct image viewing.

6.9. Software Dependencies 79

https://github.com/ericmandel/xpa

imexam Documentation, Release 0.1.dev55+gef728ae

6.10 IRAF imexamine capabilities

These are the capabilities of the IRAF version of the imexam task, called with imexamine [input [frame]], which
lives in images.tv.imexamine. The following are imexamines input options:

• input is an optional list of images to be examined. If specified, images are examined in turn, displaying them
automatically. If no images are specfied the images currently loaded into the image display are examined.

• output contains the rootname for output images created with the “t” key. If no name is specified then the name
of the input image is used. A three digit numver is appended to the rootname, such as “.001”, starting with 1
until no image is found with that name. Successive output images are numbered sequentially

• ncoutput and nloutput are the size of the output image created when the “t” key is pressed, where the output
image is centered on the cursor location

• frame specifies which frame should be used

• logfile is the filename which records output of the commands producing text, if no filename is given no logfile
will be produced

• defkey is the default key for cursor x-y input list. This key is applied to input cursor lists which do not have a
cursor key specified. It is used to repetitively apply a cursor command to a list of positions typically obtained
from another task

• allframes, if true then images from an input list are loaded by cycling through the available frames, otherwise
the last frame loaded is reused

• nframes is then number of display frames to use when automatically loading images. It should not exceed the
number of frames provided by the display device. If the number of frames is set to 0 then the task will query
the display device to determine how many frames are currently allocated. New frames may be allocated during
program execution by displaying images with the ‘d’ key.

• ncstat, nlstat correlate with the statistics command which computes values from a box centered on the specified
cursor position with the number of columns and lines given by these parameters.

The following is a list of available cursor and colon commands while imexamine is active in the display, many but not
all are available in this python imexam package:

-- IMEXAMINE COMMANDS --

CURSOR KEY COMMAND SUMMARY

? Help h Histogram p Previous frame x Coordinates
a Aperture Sum i Image cursor q Quit y Set origin
b Box coords j Line gauss fit r Radial plot z Print grid
c Column plot k Col gauss fit s Surface plot , Quick phot
d Load display l Line plot t Output image . Quick prof fit
e Contour plot m Statistics u Vector plot
f Redraw n Next frame v Vector plot
g Graphics cursor o Overplot w Toggle logfile

COLON COMMAND SUMMARY

allframes ceiling iterations naverage pointmode width
angh center label nbins radius x
angv constant logfile ncolumns round xformat
autoredraw dashpat logx ncontours rplot xlabel
autoscale defkey logy ncoutput select xorder

(continues on next page)

80 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

background eparam magzero ncstat szmarker y
banner fill majrx nhi ticklabel yformat
beta fitplot majry nlines title ylabel
boundary fittype marker nloutput top_closed yorder
box floor minrx nlstat unlearn z1,z2
buffer interval minry output wcs zero

OUTPUT OF 'a' AND 'r' KEYS

The 'a' key and logfile output has column labels and each object has one
line of measurements in the logfile and two lines on the terminal. The 'r'
key shows only the second line on the status line and the information from
the first line is in the graph title. The first line contains the x and y
center coordinates and optional world coordinates. The second line
contains the aperture magnitude and flux, the estimated background sky, the
profile fit peak, the ellipticity and position angle from the moment
analysis, and four estimates of the profile width. The four estimates are
from the moment analysis, the full-width enclosing half the flux, the
profile fit, and a direct estimate of the full width at half-maximum.

CURSOR KEY COMMANDS

? Print help
a Aperture radial photometry measurement (see above for output)
b Box coordinates for two cursor positions - c1 c2 l1 l2
c Column plot
d Load the image display
e Contour plot
f Redraw the last graph
g Graphics cursor
h Histogram plot
i Image cursor
j Fit 1D gaussian to image lines
k Fit 1D gaussian to image columns
l Line plot
m Statistics

image[section] npixels mean median stddev min max
n Next frame or image
o Overplot
p Previous frame or image
q Quit
r Radial profile plot (see above for output)
s Surface plot
t Output image centered on cursor (parameters output, ncoutput, nloutput)
u Centered vector plot from two cursor positions
v Vector plot between two cursor positions
w Toggle write to logfile
x Print coordinates

col line pixval [xorign yorigin dx dy r theta]
y Set origin for relative positions
z Print grid of pixel values - 10 x 10 grid
, Quick profile photometry measurement (Gaussian or Moffat)
. Quick radial profile plot and fit (Gaussian or Moffat)

COLON COMMANDS
(continues on next page)

6.10. IRAF imexamine capabilities 81

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

Explicit image coordinates may be entered using the colon command syntax:

:column line key

where column and line are the image coordinates and the key is one
of the cursor keys. A special syntax for line or column plots is also
available as :c# or :l# where # is a column or line and no space is
allowed.

Other colon commands set or show parameters governing the plots and other
features of the task. Each graph type has it's own set of parameters.
When a parameter applies to more than one graph the current graph is assumed.
If the current graph is not applicable then a warning is given. The
"eparam" and "unlearn" commands may be used to change many parameters and
without an argument the current graph parameters are modified while with
the graph key as an argument the appropriate parameter set is modified.
In the list below the graph key(s) to which a parameter applies are shown.

allframes Cycle through all display frames to display images
angh s Horizontal angle for surface plot
angv s Vertical angle for surface plot
autoredraw cehlrsuv. Automatically redraw graph after colon command?
autoscale h Adjust number of histogram bins to avoid aliasing
axes s Draw axes in surface plot?
background jkr. Subtract background for radial plot and photometry?
banner cehjklrsuv. Include standard banner on plots?
beta ar Moffat beta parameter (INDEF to fit or value to fix)
boundary uv Boundary extension type for vector plots
box cehjklruv. Draw box around graph?
buffer r. Buffer distance for background subtraction
ceiling es Data ceiling for contour and surface plots
center jkr. Find center for radial plot and photometry?
constant uv Constant value for boundry extension in vector plots
dashpat e Dash pattern for contour plot
eparam cehjklrsuv. Edit parameters
fill e Fill viewport vs enforce unity aspect ratio?
fitplot r Overplot profile fit on data?
fittype ar Profile fitting type (gaussian|moffat)
floor es Data floor for contour and surface plots
interval e Contour interval (0 for default)
iterations ar Iterations on fitting radius
label e Draw axis labels for contour plot?
logfile Log file name
logx chjklruv. Plot x axis logrithmically?
logy chjklruv. Plot y axis logrithmically?
magzero r. Magnitude zero for photometry
majrx cehjklruv. Number of major tick marks on x axis
majry cehjklruv. Number of major tick marks on y axis
marker chjklruv. Marker type for graph
minrx cehjklruv. Number of minor tick marks on x axis
minry cehjklruv. Number of minor tick marks on y axis
naverage cjkluv Number of columns, lines, vectors to average
nbins h Number of histogram bins
ncolumns ehs Number of columns in contour, histogram, or surface plot
ncontours e Number of contours (0 for default)
ncoutput Number of columns in output image

(continues on next page)

82 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

(continued from previous page)

ncstat Number of columns in statistics box
nhi e hi/low marking option for contours
nlines ehs Number of lines in contour, histogram, or surface plot
nloutput Number of lines in output image
nlstat Number of lines in statistics box
output Output image root name
pointmode chjkluv Plot points instead of lines?
radius r. Radius of object aperture for radial plot and photmetry
round cehjklruv. Round axes to nice values?
rplot jkr. Radius to plot in 1D and radial profile plots
select Select image or display frame
sigma jk Initial sigma for 1D gaussian fits
szmarker chjklruv. Size of marks for point mode
ticklabels cehjklruv. Label ticks?
title cehjklrsuv. Optional title for graph
top_closed h Close last bin of histogram
unlearn cehjklrsuv. Unlearn parameters to default values
wcs World coordinate system for axis labels and readback
width jkr. Width of background region
x [min max] chjklruv. Range of x to be plotted (no values for autoscaling)
xformat Coordinate format for column world coordinates
xlabel cehjklrsuv. Optional label for x axis
xorder jkr. X order of surface for background subtraction
y [min max] chjklruv. Range of y to be plotted (no values for autoscaling)
yformat Coordinate format for line world coordinates
ylabel cehjklrsuv. Optional label for y axis
yorder r. Y order of surface for background subtraction
z1 h Lower intensity value limit of histogram
z2 h Upper intensity value limit of histogram
zero e Zero level for contour plot

6.11 Comparison with the IRAF verison of imexamine

The following is a comparison of the outputs, returned values and user options for this module versus imexamine in
IRAF

• All plot types are replicated between the codes, though they may be rendered differently. The images below are
representative of the basic plots from each package.

• The same user plot options, as in the rimexam, cimexam etc. type IRAF param files are replicated to their useful
extent using python dictionaries for each imexamine key.

• Colormaps and point styles for the matplotlib plots may be changed by the user through the imexam key default
dictionaries

• In imexam, once the plot is displayed on the screen, you can zoom in and out using the controls in the plotting
window.

• imexam allows users to register their own analysis functions

• imexam does not attempt to replicate the colon command interaction, if users wish to change the plot settings
they should exit the imexam() method, reset the options and call it again.

• all of the imexam() functions in imexam can be called by themselves if you supply an x,y coordinate

How do the numerical results compare with the IRAF version? This is a little harder to judge with cursor centering.
Visual comparison of the resulting plots shows good agreement, as well as some random checks of the photometry

6.11. Comparison with the IRAF verison of imexamine 83

imexam Documentation, Release 0.1.dev55+gef728ae

and statistical return methods.

6.11.1 Statistical returns

IRAF “m” key:

:: –> imexam

SECTION NPIX MEAN MEDIAN STDDEV MIN MAX

[584:588,697:701] 25 46533. 51314. 10281. 21215. 56186.

imexam “m” key (with cursor location flooring):

[583:588,695:700] median: 51458.000000

imexam only shows one statistic at a time. The same function call may be used to show the results from any valid
numpy function, it will return an attribute error for invalid functions. For example, if you edit the defaults dictionary
for the “m” key:

viewer.mimexam()

{'function': ['report_stat'],
'region_size': [5, 'region size in pixels to use'],
'stat': ['median',
'which numpy stat to return [median,min,max...must map to a numpy func]']}

viewer.exam.report_stat_pars["stat"][0] = "max" <---- will report np.max for the
→˓array

[584:589,695:700] amax: 56186.000000

viewer.exam.report_stat_pars["stat"][0] = "mean" <---- will report np.mean for the
→˓array

[583:588,694:699] mean: 45412.878906

viewer.exam.report_stat_pars["stat"][0]="std"

[583:588,694:699] std: 10706.179688

6.11.2 Aperture Photometry

IRAF “a” key:

COL LINE COORDINATES
R MAG FLUX SKY PEAK E PA BETA ENCLOSED MOFFAT DIRECT
585.81 698.16 585.81 698.16
17.51 8.86 2.858E6 10840. 45443. 0.03 -64 8.32 5.23 7.10 5.83

imexam “a” key (using the defaults):

xc=586.138728 yc=697.990516
x y radius flux mag(zpt=25.00) sky fwhm
586.14 697.99 5 1508664.63 9.55 11160.89 6.03

84 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

The “xc” and “yc” returns are the gaussian fit centers, as well as the FWHM from the fit. If we set the values to
be similar to what IRAF.imexamine used, we can see the numbers are closer, the radius for the apertures are floored
though before being sent to photutil:

viewer.aimexam()

{'center': [True, 'Center the object location using a 2d gaussian fit'],
'function': ['aperphot'],
'radius': [5, 'Radius of aperture for star flux'],
'skyrad': [15, 'Distance to start sky annulus is pixels'],
'subsky': [True, 'Subtract a sky background?'],
'width': [5, 'Width of sky annulus in pixels'],
'zmag': [25.0, 'zeropoint for the magnitude calculation']}

viewer.exam.aperphot_pars["radius"][0]=17.5

xc=586.213790 yc=697.501845
x y radius flux mag(zpt=25.00) sky fwhm
586.21 697.50 17 2565167.11 8.98 11162.83 6.02

6.11.3 Radial Profile Plot

The fit profile of the star out to the specified radius. Users can look at the fit profile of the star using the 1D gaussian
option. By default, imexam prints the data point values to the screen.

6.11. Comparison with the IRAF verison of imexamine 85

imexam Documentation, Release 0.1.dev55+gef728ae

imexam prints the plotted data to the screen

pressed: r
xc=655.659205 yc=698.937124
Sky per pixel: 0.7021602984249302 using(rad=10.0->15.0)

at (x,y)=655,698
radii:[0 1 2 3 4 5 6 7 8 9]
flux:[74.23025852 153.66757441 60.17693806 9.7988813 7.10537578

9.08464076 3.1673068 2.92777784 0.26435121 0.18440688]

6.11.4 Contour plot

Note the added availability in this package for labeling the contours

86 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

6.11. Comparison with the IRAF verison of imexamine 87

imexam Documentation, Release 0.1.dev55+gef728ae

6.11.5 Column and Line plots

88 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

Keep in mind that python is 0-index and IRAF returns 1-index arrays, so the equivalent IRAF plot of 587 is really 588:

.

An added benefit in the python package is that you can zoom in and out of the plots using the window controls, below
is a zoomed in area of the column plot as it appears in the window:

6.11. Comparison with the IRAF verison of imexamine 89

imexam Documentation, Release 0.1.dev55+gef728ae

90 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

6.11.6 Histogram plots

6.11. Comparison with the IRAF verison of imexamine 91

imexam Documentation, Release 0.1.dev55+gef728ae

imexam prints bin information to the screen

100 bins

6.11.7 1D Gaussian plots

These plots are representative for both the column and line versions

92 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

imexam prints the fit information to the screen

xc=585.660034 yc=697.499370
(585,697) mean=585.900, fwhm=5.653

6.11.8 Surface plots

The default viewing angle for this package was set to that the axis are easiest to read, the user may choose a different
azimuthal value as well. The most fancy imexam surface plot is displayed, the user can alter it with the available
options.

6.11. Comparison with the IRAF verison of imexamine 93

imexam Documentation, Release 0.1.dev55+gef728ae

94 Chapter 6. User documentation

imexam Documentation, Release 0.1.dev55+gef728ae

6.11. Comparison with the IRAF verison of imexamine 95

imexam Documentation, Release 0.1.dev55+gef728ae

96 Chapter 6. User documentation

CHAPTER

SEVEN

REPORTING ISSUES

If you have found a bug in imexam please report it by creating a new issue on the imexam GitHub issue tracker.

Please include an example that demonstrates the issue sufficiently so that the developers can reproduce and fix the
problem. You may also be asked to provide information about your operating system and a full Python stack trace.
The developers will walk you through obtaining a stack trace if it is necessary.

97

https://github.com/spacetelescope/imexam/issues

imexam Documentation, Release 0.1.dev55+gef728ae

98 Chapter 7. Reporting Issues

CHAPTER

EIGHT

CONTRIBUTING

Like the Astropy project, imexam is made both by and for its users. We accept contributions at all levels, spanning
the gamut from fixing a typo in the documentation to developing a major new feature. We welcome contributors who
will abide by the Python Software Foundation Code of Conduct.

imexam follows the same workflow and coding guidelines as Astropy. The following pages will help you get started
with contributing fixes, code, or documentation (no git or GitHub experience necessary):

• How to make a code contribution

• Coding Guidelines

• Try the development version

• Developer Documentation

For the complete list of contributors please see the imexam contributors page on Github.

99

https://www.astropy.org/
https://www.python.org/psf/codeofconduct/
https://www.astropy.org/
http://astropy.readthedocs.io/en/stable/development/workflow/development_workflow.html
http://docs.astropy.io/en/latest/development/codeguide.html
http://astropy.readthedocs.io/en/stable/development/workflow/get_devel_version.html
http://docs.astropy.org/en/latest/#developer-documentation
https://github.com/spacetelescope/imexam/graphs/contributors

imexam Documentation, Release 0.1.dev55+gef728ae

100 Chapter 8. Contributing

CHAPTER

NINE

REFERENCE API

9.1 imexam.connect Module

This is the main controlling class, it allows the user to connect to the viewer and the imexamine classes

9.1.1 Classes

Connect([target, path, viewer, wait_time, . . .]) Connect to a display device to look at and examine im-
ages.

Connect

class imexam.connect.Connect(target=None, path=None, viewer=’ds9’, wait_time=10,
quit_window=True, port=None)

Bases: object

Connect to a display device to look at and examine images.

The control features below are a basic set that should be available in all display tools.

The class for the display tool should override them and add it’s own extra features.

Parameters

• target (string, optional) – the viewer target name or id (default is to start a new
instance of a DS9 window)

• path (string, optional) – absolute path to the viewers executable

• viewer (string, optional) – The name of the image viewer you want to use, DS9
is the default

• wait_time (int, optional) – The time to wait for a connection to be eastablished
before quitting

window
controls the viewers functions

Type a pointer to an object

imexam
controls the imexamine functions and options

Type a pointer to an object

Initialize the imexam control object.

101

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#int

imexam Documentation, Release 0.1.dev55+gef728ae

Methods Summary

aimexam([get_name]) Show the current parameters for the ‘a’ key.
alignwcs(**kwargs) Align frames with wcs.
blink(**kwargs) Blink windows if available.
cimexam([get_name]) Show the current parameters for the ‘c’ key.
clear_contour() Clear contours on window if available.
close() Close the window and end connection.
cmap(**kwargs) Set the color map table to something else.
colorbar(**kwargs) Turn the colorbar on the screen on and off.
contour(**kwargs) Show contours on the window.
contour_load(*args) Load contours from a file.
crosshair(**kwargs) Control the current position of the crosshair in the

current frame.
cursor(**kwargs) Move the cursor in the current frame to the specified

image pixel.
disp_header(**kwargs) Display the header of the current image to a window.
eimexam([get_name]) Show the current parameters for the ‘e’ key, returns

dict.
embed(**kwargs)
frame(*args, **kwargs) Move to a different frame, or add a new one
get_data() Return a numpy array of the data in the current win-

dow.
get_filename() Return the filename for the data in the current win-

dow.
get_frame_info() Return explicit information about the data displayed.
get_header(**kwargs) Return the current fits header as a string.
get_image() Return the full image object, not just the numpy ar-

ray.
get_viewer_info() Return a dictionary with information about all

frames with data.
gimexam([get_name]) Show the current parameters for curve of growth

plots, returns dict.
grab() Display a snapshop of the current image in the

browser window.
grid(*args, **kwargs) Convenience method to turn the grid on and off.
hideme() Lower the precedence of the display window.
himexam([get_name]) Show the current parameters for ‘h’ key, returns dict.
imexam() Run imexamine loop with user interaction.
jimexam([get_name]) Show the current parameters for 1D fit line plots, re-

turns dict.
kimexam([get_name]) Show the current parameters for 1D fit column plots,

returns dict.
limexam([get_name]) Show the current parameters for line plots, returns

dict.
load_fits(*args, **kwargs) Convenience function to load fits image to current

frame.
load_mef_as_cube(*args, **kwargs) Load a Mult-Extension-Fits image one frame as a

cube.
load_mef_as_multi(*args, **kwargs) Load a Mult-Extension-Fits image into multiple

frames.
Continued on next page

102 Chapter 9. Reference API

imexam Documentation, Release 0.1.dev55+gef728ae

Table 2 – continued from previous page
load_region(*args, **kwargs) Load regions from a file which uses standard format-

ting.
load_rgb(*args, **kwargs) Load three images into a frame, each one for a dif-

ferent color.
make_region(*args, **kwargs) Make an input reg file with [x,y,comment] to a stan-

dard reg file.
mark_region_from_array(*args, **kwargs) Mark regions on the viewer with a list of tuples as

input.
match(**kwargs) Match all other frames to the current frame.
mimexam([get_name]) Show the current parameters for statistical regions,

returns dict.
nancolor(**kwargs) Set the not-a-number (NaN) color.
panto_image(*args, **kwargs) Convenience function to change to x,y images coor-

dinates.
panto_wcs(*args, **kwargs) Pan to wcs coordinates in image.
plotname([filename]) Change or show the default save plotname for imex-

amine.
readcursor() Return the image coordinate postion and key

pressed.
reopen() Reopen a display window closed by the user but not

exited.
rimexam([get_name]) Show the current parameters for curve of growth

plots, returns dict.
rotate(*args, **kwargs) Rotate the current frame (in degrees).
save_header(*args, **kwargs) Save the header of the current image to a file.
save_regions(*args, **kwargs) Save the regions on the current window to a file.
save_rgb(*args, **kwargs) Save an rgb image frame that is displayed as an MEF

fits file.
scale(*args, **kwargs) Scale the image on display.
set_plot_pars([key, item, value]) Set the chosen plot parameter with the provided

value.
set_region(*args, **kwargs) Display a region using the specifications in re-

gion_string.
setlog([filename, on, level]) Turn on and off logging to a logfile or the screen.
show_window_commands() Print the available commands for the selected display

window.
showme() Raise the precedence of the display window.
showpix(*args, **kwargs) Display the pixel value table, close window when

done.
snapsave(*args, **kwargs) Create a snap shot of the current window.
timexam([get_name]) Show current parameters for image cutouts,returns

dict.
unlearn() Unlearn all the imexam parameters and reset to de-

fault.
valid_data_in_viewer() Return True if a valid file or array is loaded.
view(*args, **kwargs) Display numpy or nddata image array.
wimexam([get_name]) Show the current parameters for surface plots, re-

turns dict.
zoom(*args, **kwargs) Zoom to parameter which can be any recognized

string.
zoomtofit() Zoom the image to fit the display.

9.1. imexam.connect Module 103

imexam Documentation, Release 0.1.dev55+gef728ae

Methods Documentation

aimexam(get_name=False)
Show the current parameters for the ‘a’ key.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting
parameters for that key

alignwcs(**kwargs)
Align frames with wcs.

blink(**kwargs)
Blink windows if available.

cimexam(get_name=False)
Show the current parameters for the ‘c’ key.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting
parameters for that key

clear_contour()
Clear contours on window if available.

close()
Close the window and end connection.

cmap(**kwargs)
Set the color map table to something else.

Should verify with a defined list of options

colorbar(**kwargs)
Turn the colorbar on the screen on and off.

contour(**kwargs)
Show contours on the window.

contour_load(*args)
Load contours from a file.

crosshair(**kwargs)
Control the current position of the crosshair in the current frame.

crosshair mode is turned on by default

cursor(**kwargs)
Move the cursor in the current frame to the specified image pixel.

it will also move selected regions

disp_header(**kwargs)
Display the header of the current image to a window.

eimexam(get_name=False)
Show the current parameters for the ‘e’ key, returns dict.

embed(**kwargs)

frame(*args, **kwargs)
Move to a different frame, or add a new one

get_data()
Return a numpy array of the data in the current window.

104 Chapter 9. Reference API

imexam Documentation, Release 0.1.dev55+gef728ae

get_filename()
Return the filename for the data in the current window.

get_frame_info()
Return explicit information about the data displayed.

get_header(**kwargs)
Return the current fits header as a string.

None is returned if there’s a problem

get_image()
Return the full image object, not just the numpy array.

get_viewer_info()
Return a dictionary with information about all frames with data.

gimexam(get_name=False)
Show the current parameters for curve of growth plots, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting
parameters for that key

grab()
Display a snapshop of the current image in the browser window.

grid(*args, **kwargs)
Convenience method to turn the grid on and off.

grid can be flushed with many more options

hideme()
Lower the precedence of the display window.

himexam(get_name=False)
Show the current parameters for ‘h’ key, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting
parameters for that key

imexam()
Run imexamine loop with user interaction.

At a minimum it requires a copy of the data array

jimexam(get_name=False)
Show the current parameters for 1D fit line plots, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting
parameters for that key

kimexam(get_name=False)
Show the current parameters for 1D fit column plots, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting
parameters for that key

limexam(get_name=False)
Show the current parameters for line plots, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting
parameters for that key

load_fits(*args, **kwargs)
Convenience function to load fits image to current frame.

9.1. imexam.connect Module 105

imexam Documentation, Release 0.1.dev55+gef728ae

load_mef_as_cube(*args, **kwargs)
Load a Mult-Extension-Fits image one frame as a cube.

load_mef_as_multi(*args, **kwargs)
Load a Mult-Extension-Fits image into multiple frames.

load_region(*args, **kwargs)
Load regions from a file which uses standard formatting.

load_rgb(*args, **kwargs)
Load three images into a frame, each one for a different color.

make_region(*args, **kwargs)
Make an input reg file with [x,y,comment] to a standard reg file.

the input file should contains lines with x,y,comment

mark_region_from_array(*args, **kwargs)
Mark regions on the viewer with a list of tuples as input.

match(**kwargs)
Match all other frames to the current frame.

mimexam(get_name=False)
Show the current parameters for statistical regions, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting
parameters for that key

nancolor(**kwargs)
Set the not-a-number (NaN) color.

panto_image(*args, **kwargs)
Convenience function to change to x,y images coordinates.

using ra,dec, x, y in image coord

panto_wcs(*args, **kwargs)
Pan to wcs coordinates in image.

plotname(filename=None)
Change or show the default save plotname for imexamine.

readcursor()
Return the image coordinate postion and key pressed.

in the form of x,y,str with array offset

reopen()
Reopen a display window closed by the user but not exited.

rimexam(get_name=False)
Show the current parameters for curve of growth plots, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting
parameters for that key

rotate(*args, **kwargs)
Rotate the current frame (in degrees).

save_header(*args, **kwargs)
Save the header of the current image to a file.

save_regions(*args, **kwargs)
Save the regions on the current window to a file.

106 Chapter 9. Reference API

imexam Documentation, Release 0.1.dev55+gef728ae

save_rgb(*args, **kwargs)
Save an rgb image frame that is displayed as an MEF fits file.

scale(*args, **kwargs)
Scale the image on display.

The default zscale is the most widely used option

set_plot_pars(key=None, item=None, value=None)
Set the chosen plot parameter with the provided value.

Parameters

• key (String) – The value of the option key, should be a single letter or number

• item (string) – The value of the parameter in the dictionary

• value (float, string, int, bool) – What the parameters value should be set
to

Examples

set_plot_par(‘j’,’func’,’MexicanHat1D’)

where j is the key value during imexam func is the parameter you want to edit MexicanHat1D is the name
of the astropy function to use

set_region(*args, **kwargs)
Display a region using the specifications in region_string.

setlog(filename=None, on=True, level=20)
Turn on and off logging to a logfile or the screen.

Parameters

• filename (str, optional) – Name of the output file to record log information

• on (bool, optional) – True by default, turn the logging on or off

• level (logging class, optional) – set the level for logging messages, turn off
screen messages by setting to logging.CRITICAL

show_window_commands()
Print the available commands for the selected display window.

showme()
Raise the precedence of the display window.

showpix(*args, **kwargs)
Display the pixel value table, close window when done.

snapsave(*args, **kwargs)
Create a snap shot of the current window.

save in the specified format. If no format is specified the filename extension is used

timexam(get_name=False)
Show current parameters for image cutouts,returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting
parameters for that key

unlearn()
Unlearn all the imexam parameters and reset to default.

9.1. imexam.connect Module 107

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

imexam Documentation, Release 0.1.dev55+gef728ae

valid_data_in_viewer()
Return True if a valid file or array is loaded.

view(*args, **kwargs)
Display numpy or nddata image array.

If an astropy NDData object is passed without a reference to the data one will be added. I haven’t tested
this yet for multiarray data

wimexam(get_name=False)
Show the current parameters for surface plots, returns dict.

Either returns the name of the function associated with the keyname Or it returns the dictionary of plotting
parameters for that key

zoom(*args, **kwargs)
Zoom to parameter which can be any recognized string.

zoomtofit()
Zoom the image to fit the display.

9.2 imexam.imexamine Module

Licensed under a 3-clause BSD style license - see LICENSE.rst.

This class implements IRAF/imexamine type capabilities for providing powerful diagnostic quick-look tools.

However, the power of this python tool is that it is essentially a library of plotting and analysis routines which can be
directed towards any viewer. It can also be used without connecting to any viewer since the calls take only data,x,y
information. This means that given a data array and a list of x,y positions you can creates plots without havin to
interact with the viewers.

Users can also register a custom function with the class and have it available for use in either case.

The plots which are made are fully customizable

9.2.1 Classes

Imexamine() The imexamine class controls plotting and analysis
functions.

Imexamine

class imexam.imexamine.Imexamine
Bases: object

The imexamine class controls plotting and analysis functions.

do imexamine like routines on the current frame.

read the returned cursor key value to decide what to do

region_size is the default radius or side of the square for stat info

Methods Summary

108 Chapter 9. Reference API

https://docs.python.org/3/library/functions.html#object

imexam Documentation, Release 0.1.dev55+gef728ae

aper_phot(x, y[, data, fig]) Perform aperture photometry.
close() For use with the Imexamine object standalone.
column_fit(x, y[, data, form, genplot, fig]) Compute the 1d fit to the column of data.
contour(x, y[, data, fig]) plot contours in a region around the specified loca-

tion.
curve_of_growth(x, y[, data, genplot, fig]) Display a curve of growth plot.
cutout(x, y[, data, size, fig]) Make a fits cutout around the pointer location with-

out wcs.
do_option(x, y, key) Run the imexam option.
gauss_center(x, y[, data, delta, sigma_factor]) Return the 2d gaussian fit center of the data.
get_options() Return the imexam options as a key list.
get_plot_name() return the default plot name.
histogram(x, y[, data, genplot, fig]) Calulate a histogram of the data values.
line_fit(x, y[, data, form, genplot, fig, col]) compute the 1D fit to the line of data using the spec-

ified form.
new_plot_window(x, y[, data]) make the next plot in a new plot window.
option_descrip(key[, field]) Return the looked up dictionary of options.
plot_column(x, y[, data, fig]) column plot of data at point y.
plot_line(x, y[, data, fig]) line plot of data at point x.
print_options() Print the imexam options to screen.
radial_profile(x, y[, data, form, genplot, fig]) Display the radial profile plot (intensity vs radius) for

the object.
register(user_funcs) register a new imexamine function made by the user

as an option.
report_stat(x, y[, data]) report the statisic of values in a box with side re-

gion_size.
reset_defpars() set all pars to their defaults.
save([filename, fig]) Save to file the figure that’s currently displayed.
save_figure(x, y[, data, fig]) Save to file the figure that’s currently displayed.
set_aper_phot_pars([user_dict]) the user may supply a dictionary of par settings.
set_colplot_pars() set parameters for column plots.
set_column_fit_pars() set parameters for 1D line fit plots.
set_contour_pars() set parameters for contour plots.
set_curve_pars() set parameters for curve of growth plots.
set_cutout_pars() set parameters for cutout images.
set_data([data]) initialize the data that imexamine uses.
set_histogram_pars() set parameters for histogram plots.
set_line_fit_pars() set parameters for 1D line fit plots.
set_lineplot_pars() set parameters for line plots.
set_option_funcs() Define the dictionary which maps imexam keys to

their functions.
set_plot_name([filename]) set the default plot name for the “s” key.
set_radial_pars() set parameters for radial profile plots.
set_surface_pars() set parameters for surface plots.
setlog([filename, on, level]) Turn on and off logging to a logfile or the screen.
show_fit_models() Print the available astropy models for plot fits.
show_xy_coords(x, y[, data]) print the x,y,value to the screen.
surface(x, y[, data, fig]) plot a surface around the specified location.
unlearn_all() reset the default parameters for all functions.

9.2. imexam.imexamine Module 109

imexam Documentation, Release 0.1.dev55+gef728ae

Methods Documentation

aper_phot(x, y, data=None, fig=None)
Perform aperture photometry.

uses photutils functions, photutils must be available

Parameters

• x (int) – The x location of the object

• y (int) – The y location of the object

• data (numpy array) – The data array to work on

• fig (figure object for redirect) – Used for interaction with the ginga GUI

close()
For use with the Imexamine object standalone.

column_fit(x, y, data=None, form=None, genplot=True, fig=None)
Compute the 1d fit to the column of data.

Parameters

• x (int) – The x location of the object

• y (int) – The y location of the object

• data (numpy array) – The data array to work on

• form (string) – This is the functional form specified in the column fit parameters

• genplot (int) – produce the plot or return the fit model

• fig (figure name for redirect) – Used for interaction with the ginga GUI

Notes

delta is the range of data values to use around the x,y location

The background is currently ignored

if centering is True, then the center is fit with a 2d gaussian, but this is currently not done for Polynomial1D

contour(x, y, data=None, fig=None)
plot contours in a region around the specified location.

Parameters

• x (int) – The x location of the object

• y (int) – The y location of the object

• data (numpy array) – The data array to work on

• fig (figure for redirect) – Used for interaction with the ginga GUI

curve_of_growth(x, y, data=None, genplot=True, fig=None)
Display a curve of growth plot.

Parameters

• x (int) – The x location of the object

• y (int) – The y location of the object

110 Chapter 9. Reference API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

imexam Documentation, Release 0.1.dev55+gef728ae

• data (numpy array) – The data array to work on

• fig (figure name for redirect) – Used for interaction with the ginga GUI

Notes

the object photometry is taken from photutils

cutout(x, y, data=None, size=None, fig=None)
Make a fits cutout around the pointer location without wcs.

Parameters

• x (int) – The x location of the object

• y (int) – The y location of the object

• data (numpy array) – The data array to work on

• size (int) – The radius of the cutout region

• fig (figure for redirect) – Used for interaction with the ginga GUI

do_option(x, y, key)
Run the imexam option.

Parameters

• x (int) – The x location of the cursor or data point

• y (int) – The y location of the cursor or data point

• key (string) – The key which was pressed

gauss_center(x, y, data=None, delta=10, sigma_factor=0)
Return the 2d gaussian fit center of the data.

Parameters

• x (int) – The x location of the object

• y (int) – The y location of the object

• data (numpy array) – The data array to work on

• delta (int) – The range of data values (bounding box) to use around the x,y location
for calculating the center

• sigma_factor (float, optional) – The sigma clipping factor to use on the data
fit

get_options()
Return the imexam options as a key list.

get_plot_name()
return the default plot name.

histogram(x, y, data=None, genplot=True, fig=None)
Calulate a histogram of the data values.

Parameters

• x (int, required) – The x location of the object

• y (int, required) – The y location of the object

• data (numpy array, optional) – The data array to work on

9.2. imexam.imexamine Module 111

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

imexam Documentation, Release 0.1.dev55+gef728ae

• genplot (boolean, optional) – If false, returns the hist, bin_edges tuple

• fig (figure name for redirect) – Used for interaction with the ginga GUI

Notes

This functional originally used the pylab histogram routine for plotting. In order to accomodate returning
just the histogram data, this was changed to the numpy histogram, with a subsequent plot if genplot is
True.

Does not yet support numpy v1.11 strings for bin estimation.

line_fit(x, y, data=None, form=None, genplot=True, fig=None, col=False)
compute the 1D fit to the line of data using the specified form.

Parameters

• x (int) – The x location of the object

• y (int) – The y location of the object

• data (numpy array) – The data array to work on

• form (string) – This is the functional form specified in the line fit parameters see
show_fit_models()

• genplot (bool) – produce the plot or return the fit

• fig (figure for redirect) – Used for interaction with the ginga GUI

• col (bool (False)) – Plot column instead of line

Notes

The background is currently ignored

If centering is True in the parameter set, then the center is fit with a 2d gaussian, not performed for
Polynomial1D

new_plot_window(x, y, data=None)
make the next plot in a new plot window.

Notes

x,y, data, are not used here, but the calls are setup to take them for all imexam options. Is there a better
way to do the calls in general? Once the new plotting window is open all plots will be directed towards it.
The old window cannot be used again.

option_descrip(key, field=1)
Return the looked up dictionary of options.

Parameters

• key (string) – The key which was pressed, it relates to the function to call

• field (int) – This tells where in the option dictionary the function name can be found

plot_column(x, y, data=None, fig=None)
column plot of data at point y.

Parameters

112 Chapter 9. Reference API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

imexam Documentation, Release 0.1.dev55+gef728ae

• x (int) – The x location of the object

• y (int) – The y location of the object

• data (numpy array) – The data array to work on

• fig (figure name for redirect) – Used for interaction with the ginga GUI

plot_line(x, y, data=None, fig=None)
line plot of data at point x.

Parameters

• x (int) – The x location of the object

• y (int) – The y location of the object

• data (numpy array) – The data array to work on

• fig (figure object for redirect) – Used for interaction with the ginga GUI

print_options()
Print the imexam options to screen.

radial_profile(x, y, data=None, form=None, genplot=True, fig=None)
Display the radial profile plot (intensity vs radius) for the object.

From the parameters Dictionary: If pixel is True, then every pixel at each radius is plotted. If pixel is False,
then the sum of all pixels in integer bins is plotted

Background may be subtracted and centering can be done with a 2D Gaussian fit. These options are read
from the plot parameters dict.

Parameters

• x (int) – The x location of the object

• y (int) – The y location of the object

• data (numpy array) – The data array to work on

• form (string) – The string name of the form of the fit to use

• genplot (bool) – Generate the plot if True, else retfurn the fit data

register(user_funcs)
register a new imexamine function made by the user as an option.

Parameters user_funcs (dict) – Contains a dictionary where each key is the binding for
the (function,description) tuple

Notes

The new binding will be added to the dictionary of imexamine functions as long as the key is unique. The
new functions do not have to have default dictionaries associated with them.

report_stat(x, y, data=None)
report the statisic of values in a box with side region_size.

The statistic can be any numpy function

Parameters

• x (int) – The x location of the object

• y (int) – The y location of the object

9.2. imexam.imexamine Module 113

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

imexam Documentation, Release 0.1.dev55+gef728ae

• data (numpy array) – The data array to work on

reset_defpars()
set all pars to their defaults.

save(filename=None, fig=None)
Save to file the figure that’s currently displayed.

this is used for the standalone plotting

Parameters

• filename (string) – Name of the file the plot will be saved to. The extension on the
filename determines the filetype

• fig (figure name for redirect) – Used for interaction with the ginga GUI

save_figure(x, y, data=None, fig=None)
Save to file the figure that’s currently displayed.

this is used for the imexam loop, because there is a standard api for the loop

Parameters

• x (int) – The x location of the object

• y (int) – The y location of the object

• data (numpy array) – The data array to work on

• fig (figure for redirect) – Used for interaction with the ginga GUI

set_aper_phot_pars(user_dict=None)
the user may supply a dictionary of par settings.

set_colplot_pars()
set parameters for column plots.

set_column_fit_pars()
set parameters for 1D line fit plots.

set_contour_pars()
set parameters for contour plots.

set_curve_pars()
set parameters for curve of growth plots.

set_cutout_pars()
set parameters for cutout images.

set_data(data=array([], dtype=float64))
initialize the data that imexamine uses.

set_histogram_pars()
set parameters for histogram plots.

set_line_fit_pars()
set parameters for 1D line fit plots.

set_lineplot_pars()
set parameters for line plots.

set_option_funcs()
Define the dictionary which maps imexam keys to their functions.

114 Chapter 9. Reference API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

imexam Documentation, Release 0.1.dev55+gef728ae

Notes

The user can modify this dictionary to add or change options, the first item in the tuple is the associated
function the second item in the tuple is the description of what the function does when that key is pressed

set_plot_name(filename=None)
set the default plot name for the “s” key.

Parameters filename (string) – The name which is used to save the current plotting win-
dow to a file The extension on the name decides which file type is used

set_radial_pars()
set parameters for radial profile plots.

set_surface_pars()
set parameters for surface plots.

setlog(filename=None, on=True, level=20)
Turn on and off logging to a logfile or the screen.

Parameters

• filename (str, optional) – Name of the output file to record log information

• on (bool, optional) – True by default, turn the logging on or off

• level (logging class, optional) – set the level for logging messages, turn off
screen messages by setting to logging.CRITICAL

show_fit_models()
Print the available astropy models for plot fits.

show_xy_coords(x, y, data=None)
print the x,y,value to the screen.

Parameters

• x (int) – The x location of the object

• y (int) – The y location of the object

• data (numpy array) – The data array to work on

surface(x, y, data=None, fig=None)
plot a surface around the specified location.

Parameters

• x (int) – The x location of the object

• y (int) – The y location of the object

• data (numpy array) – The data array to work on

• fig (figure for redirect) – Used for interaction with the ginga GUI

unlearn_all()
reset the default parameters for all functions.

9.3 imexam.ds9_viewer Module

Licensed under a 3-clause BSD style license - see LICENSE.rst

This class supports communication with DS9 through the XPA

9.3. imexam.ds9_viewer Module 115

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

imexam Documentation, Release 0.1.dev55+gef728ae

Some code in this class was adapted from pysao, which can be found at https://github.com/leejjoon/pysao. Specifically
this package used the existing Cython implementation to the XPA and extended the calls to the other available XPA
executables so that more functionality is added. The API information is available here:

http://hea-www.harvard.edu/RD/xpa/client.html#xpaopen

Using Cython will allow for broader development of the code and produce faster runtimes for large datasets with
repeated calls to the display manager.

XPA is licensed under MIT, help can be found here: http://hea-www.cfa.harvard.edu/saord/xpa/help.html

The current XPA can be downloaded from here: http://hea-www.harvard.edu/saord/xpa/

9.3.1 Classes

ds9([target, path, wait_time, quit_ds9_on_del]) Control all interactions between the user and the DS9
window.

ds9

class imexam.ds9_viewer.ds9(target=”, path=”, wait_time=5, quit_ds9_on_del=True)
Bases: object

Control all interactions between the user and the DS9 window.

The ds9() contructor takes a ds9 target as its main argument. If none is given, then a new window and process
will be started.

DS9’s xpa access points are documented in the reference manual, but the can also be returned to the user with a
call to xpaset.

http://hea-www.harvard.edu/saord/ds9/ref/xpa.html

Parameters

• target (string, optional) – the ds9 target name or id. If None or empty string, a
new ds9 instance is created.

• path (string, optional) – path of the ds9. Used only if a new ds9 is requested.

• wait_time (float, optional) – waiting time before error is raised

• quit_ds9_on_del (boolean, optional) – If True, try to quit ds9 when this in-
stance is deleted.

wait_time
The waiting time before error is raised

Type float

path
The path to the DS9 executable

Type string

_xpa_name
The value in XPA_METHOD, the name of the DS9 window

Type string

_quit_ds9_on_del
Determine whether to quit ds9 when object goes out of scope.

116 Chapter 9. Reference API

https://github.com/leejjoon/pysao
http://hea-www.harvard.edu/RD/xpa/client.html#xpaopen
http://hea-www.cfa.harvard.edu/saord/xpa/help.html
http://hea-www.harvard.edu/saord/xpa/
https://docs.python.org/3/library/functions.html#object
http://hea-www.harvard.edu/saord/ds9/ref/xpa.html
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

imexam Documentation, Release 0.1.dev55+gef728ae

Type boolean

_ds9_unix_name
The full path filename to the unix socket, only if unix sockets are being used with local

Type string

_need_to_purge
whenever there are unix socket directories which need to be purged when the object goes out of scope

Type boolean

_tmpd_name
The full path name to the unix socket file on the local system

Type string

_filename
The name of the image that’s currently loaded into DS9

Type string

_ext
Extension of the current image that is loaded. If one extension of an MEF file is loaded this will be 1
regardless of the extension that was specified (because DS9 and the XPA now see it as a single image and
header)

Type int

_extname
If available, the EXTNAME of the MEF extension that is loaded, taken from the current data header

Type string

_extver
If available, the EXTVER of the MEF extension that is loaded, taken from the current data header

Type int

_ds9_process
Points to the ds9 process id on the system, returned by Popen, whenever this module starts DS9

Type pointer

_mef_file
The file is a multi-extension fits file

Type boolean

_iscube
The file is a multiextension fits file, and one of the extensions contains at least 1 additional extension (3D
or more)

Type bookean

_numaxis
number of image planes, this is NAXIS

Type int

_naxis
specific image plane displayed, defaulted to 1 image plane, most relevant to cube fits files

Type tuple

starter.

9.3. imexam.ds9_viewer Module 117

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#tuple

imexam Documentation, Release 0.1.dev55+gef728ae

Notes

I think this is a quirk in the XPA communication. The xpans, and XPA prefer to have all connections be of the
same type. DS9 defaults to creating an INET connection. In some cases, if no IP address can be found for the
computer, the startup can hang. In these cases, a local connection is preferred, which uses a unix filename for
the socket.

The problem arises that if the user already has DS9 windows running, that were started by default, the name-
server is only listening for the default socket type (inet) and not local. There are also cases where the machine
running this code does not have xpa installed, so there is no xpans (nameserver) to run and keep track of the
open connections. In that case, the user needs to provide this init with the name of the socket in their window
(in XPA_METHOD) in order to create the connection.

Methods Summary

alignwcs([on]) align wcs.
blink([blink, interval]) Blink frames.
clear_contour() clear contours from the screen.
close() close the window and end connection.
cmap([color, load, invert, save, filename]) Set the color map table, using a defined list of op-

tions.
colorbar([on]) turn the colorbar on the bottom of the window on and

off.
contour([on, construct]) show contours on the window.
contour_load(filename) load a contour file into the window.
crosshair([x, y, coordsys, skyframe, . . .]) Control the position of the crosshair in the current

frame.
cursor([x, y]) move the cursor in the current frame to the specified

image pixel.
disp_header() Display the header of the current image to a DS9

window.
embed() Embed the viewer in a notebook.
frame([n]) convenience function to change or report frames.
get(param) XPA get method to ds9 instance which returns re-

ceived string.
get_data() return a numpy array of the data displayed in the cur-

rent frame.
get_filename() return the filename currently on display.
get_frame_info() return more explicit information about the data dis-

played.
get_header([fitsobj]) Return the current fits header.
get_image() return the full image object instead of just the data

array.
get_slice_info() return the slice tuple that is currently displayed.
get_viewer_info() Return a dictionary of information.
grab() Make a copy of the image view.
grid([on, param]) convenience to turn the grid on and off.
hideme() lower the ds9 window.
iscube() return whether a cube image is displayed in the cur-

rent frame.
Continued on next page

118 Chapter 9. Reference API

imexam Documentation, Release 0.1.dev55+gef728ae

Table 6 – continued from previous page
load_fits(fname[, extver, mecube, autoscale]) convenience function to load fits image to current

frame.
load_mef_as_cube([filename]) Load a Mult-Extension-Fits image into one frame as

an image cube.
load_mef_as_multi([filename]) Load a Mult-Extension-Fits image into multiple

frames.
load_region(filename) Load regions from a file which uses ds9 standard for-

matting.
load_rgb(red, green, blue[, scale, lockwcs]) load 3 images into an RGBimage frame.
make_region(infile[, labels, header, . . .]) make an input reg file with [x,y,comment] to a DS9

reg file.
mark_region_from_array(input_points[,
. . .])

mark ds9 regions regions given an input list of tuples.

match([coordsys, frame, crop, fslice, . . .]) match all other frames to the current frame.
nancolor([color]) set the not-a-number color, default is red.
panto_image(x, y) convenience function to change to x,y physical im-

age coordinates.
panto_wcs(x, y[, system]) pan to wcs location coordinates in image.
readcursor() Returns the image coordinate postion and key

pressed.
reopen() Reopen a closed window.
rotate([value, to]) rotate the current frame (in degrees).
run_inet_ds9() start a new ds9 window using an inet socket connec-

tion.
save_regions([filename]) save the regions in the current window to a DS9 style

regions file.
save_rgb([filename]) save an rgbimage frame as an MEF fits file.
scale([scale]) The default zscale is the most widely used option.
set(param[, buf]) XPA set method to ds9 instance.
set_iraf_display() Set the environemnt variable IMTDEV to the current

display.
set_region([region_string]) display a region using the specifications in re-

gion_string.
show_xpa_commands() Print the available XPA commands.
showme() raise the ds9 window.
showpix([close]) display the pixel value table, close window when

done.
snapsave([filename, format, resolution]) Create a snap shot of the current window, save in

specified format.
valid_data_in_viewer() return bool if valid file or array is loaded into the

viewer.
view(img) Display numpy image array to current frame.
zoom([par]) Zoom using the specified command.
zoomtofit() Zoom to fit the image to the viewer.

Methods Documentation

alignwcs(on=True)
align wcs.

Parameters on (bool) – Align the images using the WCS in their headers

blink(blink=True, interval=None)

9.3. imexam.ds9_viewer Module 119

https://docs.python.org/3/library/functions.html#bool

imexam Documentation, Release 0.1.dev55+gef728ae

Blink frames.

Parameters

• blink (bool, optional) – Set to True to start blinking the frames which are open

• interval (int) – Set interval equal to the length of pause for blinking

Notes

blink_syntax= Syntax: blink [true|false] [interval <value>]

clear_contour()
clear contours from the screen.

close()
close the window and end connection.

cmap(color=None, load=None, invert=False, save=False, filename=’colormap.ds9’)
Set the color map table, using a defined list of options.

Parameters

• color (string) – color must be set to one of the available DS9 color map names

• load (string, optional) – set to the filename which is a valid colormap lookup
table valid contrast values are from 0 to 10, and valid bias values are from 0 to 1

• invert (bool, optional) – invert the colormap

• save (bool, optional) – save the current colormap as a file

• filename (string, optional) – the name of the file to save the colormap to

colorbar(on=True)
turn the colorbar on the bottom of the window on and off.

Parameters on (bool) – Set to True to turn on the colorbar, False to turn it off

contour(on=True, construct=True)
show contours on the window.

Parameters

• on (bool) – Set to true to turn on contours

• construct (bool, optional) – Will open the contour dialog box which has more
options

contour_load(filename)
load a contour file into the window.

Parameters filename (string) – The name of the file with the contour level defined

crosshair(x=None, y=None, coordsys=’physical’, skyframe=’wcs’, skyformat=’fk5’, match=False,
lock=False)

Control the position of the crosshair in the current frame.

crosshair mode is turned on automatically

Parameters

• x (string or int) – The value of x is converted to a string for the call to XPA, use a
value here appropriate for the skyformat you choose

120 Chapter 9. Reference API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

imexam Documentation, Release 0.1.dev55+gef728ae

• y (string or int) – The value of y is converted to a string for the call to XPA, use a
value here appropriate for the skyformat you choose

• coordsys (string, optional) – The coordinate system your x and y are defined
in

• skyframe (string, optional) – If skyframe has “wcs” in it then skyformat is also
sent to the XPA

• skyformat (string, optional) – Used with skyframe, specifies the format of the
coordinate which were given in x and y

• match (bool, optional) – If set to True, then the wcs is matched for the frames

• lock (bool, optional) – If set to True, then the frame is locked in wcs

cursor(x=None, y=None)
move the cursor in the current frame to the specified image pixel.

selected regions will also be moved

Parameters

• x (int) – pixel location x coordinate to move to

• y (int) – pixel location y coordinate to move to

• and y are converted to strings for the call (x) –

disp_header()
Display the header of the current image to a DS9 window.

embed()
Embed the viewer in a notebook.

frame(n=None)
convenience function to change or report frames.

Parameters n (int, string, optional) – The frame number to open or change to. If
the number specified doesn’t exist, a new frame will be opened If nothing is specified, then
the current frame number will be returned. The value of n is converted to a string before
passing to the XPA

Examples

frame(1) sets the current frame to 1 frame(“last”) set the current frame to the last frame frame() returns the
number of the current frame frame(“new”) opens a new frame frame(3) opens frame 3 if it doesn’t exist
already, otherwise goes to frame 3

get(param)
XPA get method to ds9 instance which returns received string.

Parameters param (parameter string (eg. "fits" "regions")) –

Notes

This function is linked with the Cython implementation get(param)

get_data()
return a numpy array of the data displayed in the current frame.

9.3. imexam.ds9_viewer Module 121

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

imexam Documentation, Release 0.1.dev55+gef728ae

Notes

This is the data array that the imexam() function from connect() uses for analysis

astropy.io.fits stores data in row-major format. So a 4d image would be [NAXIS4, NAXIS3, NAXIS2,
NAXIS1] just the one image is retured in the case of multidimensional data, not the cube

get_filename()
return the filename currently on display.

This function will check if there is already a filename saved. It’s possible that the user can connect to a
ds9 window with no file loaded and then ask for the data file name after loading one through the ds9 menu
options. This will poll the private filename and then try and set one if it’s empty.

get_frame_info()
return more explicit information about the data displayed.

get_header(fitsobj=False)
Return the current fits header.

The return value is the string or None if there’s a problem If fits is True then a fits header object is returned
instead

get_image()
return the full image object instead of just the data array.

get_slice_info()
return the slice tuple that is currently displayed.

get_viewer_info()
Return a dictionary of information.

The dictionary contains information about all frames which are loaded with data

Notes

Consider adding a loop to verify that all the frames still exist and the user has not deleted any through the
gui.

grab()
Make a copy of the image view.

grid(on=True, param=False)
convenience to turn the grid on and off.

grid can be flushed with many more options

Parameters

• on (bool, optional) – Will turn the grid overlay on in the current frame

• param (bool, optional) – Will open the parameter dialog in DS9

hideme()
lower the ds9 window.

iscube()
return whether a cube image is displayed in the current frame.

load_fits(fname, extver=None, mecube=False, autoscale=True)
convenience function to load fits image to current frame.

Parameters

122 Chapter 9. Reference API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

imexam Documentation, Release 0.1.dev55+gef728ae

• fname (string, FITS object) – The name of the file to be loaded. You can specify
the full extension in the name, such as filename_flt.fits or filename_flt.fits[1] You can also
pass it an in-memory FITS object

• extver (int, optional) – The extension to load (EXTVER in the header)

• mecube (bool, optional) – If mecube is True, load the fits file as a cube into ds9

• autoscale (bool) – If true, the image will be autoscaled to zoom-to-fit as well as flux
autoscaled upon load

Notes

To tell ds9 to open a file whose name or path includes spaces, surround the path with “{. . . }”, e.g.

% xpaset -p ds9 file “{foo bar/my image.fits}”

This is assuming that the image loads into the current or next new frame, watch the internal file and ext
values because the user can switch frames through DS9 app itself

XPA needs to have the absolute path to the filename so that if the DS9 window was started in another
directory it can still find the file to load. The pathname also needs to be stripped of spaces.

load_mef_as_cube(filename=None)
Load a Mult-Extension-Fits image into one frame as an image cube.

load_mef_as_multi(filename=None)
Load a Mult-Extension-Fits image into multiple frames.

load_region(filename)
Load regions from a file which uses ds9 standard formatting.

Parameters filename (string) – The file containing the DS9 style region description

load_rgb(red, green, blue, scale=False, lockwcs=False)
load 3 images into an RGBimage frame.

Parameters

• red (string) – The name of the fits file loaded into the red channel

• green (string) – The name of the fits file loaded into the green channel

• blue (string) – The name of the fits file loaded into the blue channel

• scale (bool) – If True, then each image will be scaled with zscale() after loading

• lockwcs (bool) – If True, then the image positions will be locked to each other using
the WCS information in their headers

make_region(infile, labels=False, header=0, textoff=10, size=5)
make an input reg file with [x,y,comment] to a DS9 reg file.

the input file should contain lines specifying x,y,comment

Parameters

• infile (str) – input filename

• labels (bool) – add labels to the regions

• header (int) – number of header lines in text file to skip

• textoff (int) – offset in pixels for labels

• size (int) – size of the region type

9.3. imexam.ds9_viewer Module 123

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

imexam Documentation, Release 0.1.dev55+gef728ae

Notes

only circular regions are supported currently

mark_region_from_array(input_points, ptype=’image’, textoff=10, size=4)
mark ds9 regions regions given an input list of tuples.

a convienence function, you can also use set_region

Parameters

• input_points (iterator, a tuple, or list of tuples) – or a string:
(x,y,comment),

• ptype (string) – the reference system for the point locations, image|physical|fk5

• size (int) – the size of the region marker

• textoff (string) – the offset for the comment text, if comment is empty it will not
show

Notes

only circular regions are supported currently

match(coordsys=’wcs’, frame=True, crop=False, fslice=False, scale=False, bin=False, color-
bar=False, smooth=False, crosshair=False)

match all other frames to the current frame.

Parameters

• coordsys (string, optional) – The coordinate system to use

• frame (bool, optional) – Match all other frames to the current frame, using the set
coordsys

• crop (bool, optional) – Set the current image display area, using the set coordsys

• fslice (bool, optional) – Match current slice in all frames

• scale (bool, optional) – Match to the current scale for all frames

• bin (bool, optional) – Match to the current binning for all frames

• colorbar (bool, optional) – Match to the current colorbar for all frames

• smooth (bool, optional) – Match to the current smoothing for all frames

• crosshair (bool, optional) – Match the crosshair in all frames, using the current
coordsys

Notes

You can only choose one of the options at a time, and the logic will select the first True option so set
frame=False and something else in addition to your choice if you don’t want the default option.

nancolor(color=’red’)
set the not-a-number color, default is red.

Parameters color (string) – The color to use for NAN pixels

panto_image(x, y)
convenience function to change to x,y physical image coordinates.

124 Chapter 9. Reference API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

imexam Documentation, Release 0.1.dev55+gef728ae

Parameters

• x (float) – X location in physical coords to pan to

• y (float) – Y location in physical coords to pan to

panto_wcs(x, y, system=’fk5’)
pan to wcs location coordinates in image.

Parameters

• x (string) – The x location to move to, specified using the given system

• y (string) – The y location to move to

• system (string) – The reference system that x and y were specified in, they should be
understood by DS9

readcursor()
Returns the image coordinate postion and key pressed.

Notes

XPA returns strings of the form: u a 257.5 239

reopen()
Reopen a closed window.

rotate(value=None, to=False)
rotate the current frame (in degrees).

the current rotation is printed with no params

Parameters

• value (float [degrees]) – Rotate the current frame {value} degrees If value is 0,
then the current rotation is printed

• to (bool) – Rotate the current frame to the specified value

run_inet_ds9()
start a new ds9 window using an inet socket connection.

Notes

It is given a unique title so it can be identified later.

save_regions(filename=None)
save the regions in the current window to a DS9 style regions file.

Parameters filename (string) – The nameof th file to which the regions displayed in the
current window are saved. If no filename is provided then it will try and save the regions to
the name of the file in the current display with _regions.txt appended

If a file of that name already exists on disk it will no attempt to overwrite it

save_rgb(filename=None)
save an rgbimage frame as an MEF fits file.

Parameters filename (string) – The name of the output fits image

scale(scale=’zscale’)
The default zscale is the most widely used option.

9.3. imexam.ds9_viewer Module 125

https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#bool

imexam Documentation, Release 0.1.dev55+gef728ae

Parameters scale (string) – The scale for ds9 to use, these are set strings of [lin-
ear|log|pow|sqrt|squared|asinh|sinh|histequ]

Notes

The xpa doesn’t return an error if you set an unknown scale, it just doesn’t do anything, this is true for all
the xpa calls

set(param, buf=None)
XPA set method to ds9 instance.

Notes

This function is linked with the Cython implementation

set(param, buf=None) param : parameter string (eg. “fits” “regions”) buf : aux data string (sometime string
needed to be ended with CR)

set_iraf_display()
Set the environemnt variable IMTDEV to the current display.

the socket address of the current imexam.ds9 instance is used .. rubric:: Notes

For example, your pyraf commands will use this ds9 for display.

TODO: Not sure this is still needed. Stop using IRAF.

set_region(region_string=”)
display a region using the specifications in region_string.

Parameters region_string (string) – Should take the form of a region string that DS9
is expecting

Examples

set_region(“physical ruler 200 300 200 400”) set_region(“line 0 400 3 400 #color=red”)

show_xpa_commands()
Print the available XPA commands.

showme()
raise the ds9 window.

showpix(close=False)
display the pixel value table, close window when done.

Parameters close (bool, optional) – If set to True, then the pixel table dialog window
is closed

snapsave(filename=None, format=None, resolution=100)
Create a snap shot of the current window, save in specified format.

This function bypasses the XPA calling routines to avoid a bug with the X11/XPA interface. Instead is
uses the os import function which takes a snapshot of the specified x11 window.

Parameters

• filename (str, optional) – filename of output image, the extension in the file-
name can also be used to specify the format. If no filename is specified, then the filename
will be constructed from the name of the image displayed image with _snap.png appended.

126 Chapter 9. Reference API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

imexam Documentation, Release 0.1.dev55+gef728ae

• format (str, optional) – available formats are fits, eps, gif, tiff, jpeg, png If no
format is specified the filename extension is used

• resolution (int, optional) – 1 to 100, for jpeg images

valid_data_in_viewer()
return bool if valid file or array is loaded into the viewer.

view(img)
Display numpy image array to current frame.

Parameters img (numpy array) – The array containing data, it will be forced to
numpy.array()

zoom(par=’to fit’)
Zoom using the specified command.

Parameters par (string) –

• it can be a number (ranging 0 to 8 effectively), and successive calls continue zooming
in the same direction

• it can be two numbers ‘4 2’, which specify zoom on different axis

• if can be to a specific value ‘to 8’ or ‘to fit’

• it can be ‘open’ to open the dialog box

• it can be ‘close’ to close the dialog box (only valid if the box is already open)

Examples

zoom(‘0.1’)

zoomtofit()
Zoom to fit the image to the viewer.

9.4 imexam.ginga_viewer Module

Licensed under a 3-clause BSD style license - see LICENSE.rst

This class supports communication with a Ginga-based viewer. For default key and mouse shortcuts in a Ginga
window, see: https://ginga.readthedocs.org/en/latest/quickref.html

9.4.1 Classes

ginga([exam, close_on_del, logger, port, . . .]) A ginga-based viewer that displays to an HTML5 wid-
get in a browser.

ginga_general([exam, close_on_del, logger, port]) A base class which controls all interactions between the
user and the ginga widget.

ginga

class imexam.ginga_viewer.ginga(exam=None, close_on_del=True, logger=None, port=None,
host=’localhost’, use_opencv=False)

Bases: imexam.ginga_viewer.ginga_general

9.4. imexam.ginga_viewer Module 127

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://ginga.readthedocs.org/en/latest/quickref.html

imexam Documentation, Release 0.1.dev55+gef728ae

A ginga-based viewer that displays to an HTML5 widget in a browser.

This is compatible with the Jupyter notebook and can be run from a server.

This kind of viewer has slower performance than if we choose some widget back ends, but the advantage is that
it works so long as the user has a working browser.

All the rendering is done on the server side and the browser only acts as a display front end. Using this you
could create an analysis type environment on a server and view it via a browser or from a Jupyter notebook.

Methods Summary

close() Close the viewing window.
reopen() Reopen the viewer window if the user closes it acci-

dentally.

Methods Documentation

close()
Close the viewing window.

reopen()
Reopen the viewer window if the user closes it accidentally.

ginga_general

class imexam.ginga_viewer.ginga_general(exam=None, close_on_del=True, logger=None,
port=None)

Bases: object

A base class which controls all interactions between the user and the ginga widget.

The ginga contructor creates a new window using the ginga backend.

Parameters close_on_del (boolean, optional) – If True, try to close the window when
this instance is deleted.

view
The object instantiated from a Ginga view class

Type Ginga view object

exam

Type imexamine object

initialize a general ginga viewer object.

Parameters

• exam (imexam object) – This is the imexamine object which contains the examination
functions

• close_on_del (bool) – If True, the window connection shuts down when the object is
deleted

• logger (logger object) – Ginga viewers all need a logger, if none is provided it will
create one

128 Chapter 9. Reference API

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#bool

imexam Documentation, Release 0.1.dev55+gef728ae

• port (int) – This is used as the communication port for the HTML5 viewer. The user can
choose to have multiple windows open at the same time as long as they have different port
designations. If no port is specified, this class will choose an open port.

Methods Summary

blink() Blink multiple frames.
close() Close the window.
cmap([color, load, invert, save, filename]) Set the color map table to something else, using a

defined list of options.
contour_load() Load a file with contour information.
crosshair(**kwargs) Control the current position of the crosshair in the

frame.
cursor(**kwargs) Move the cursor in the current frame to the specified

image pixel.
disp_header() Display the fits header for the current data.
embed([width, height]) Embed the current window into the notebook.
frame() Convenience function to report frames.
get_data() Return a numpy array of the data displayed in the

current frame
get_filename() Return the filename currently associated with the

data
get_frame_info() Return more explicit information about the data in

current frame.
get_header() Return current fits header as string, None if there’s a

problem.
get_image() Return the AstroImage instance for the data in the

viewer
get_slice_info() Return the slice tuple that is currently displayed.
get_viewer_info() Return a dictionary of information about all frames

with data
grab()
grid(*args, **kwargs) Turn the grid display on and off.
hideme() Lower the display window in prededence.
iscube() Return whether a cube image is displayed in the cur-

rent frame.
load_fits([fname, extver]) Load fits image to current frame.
load_mef_as_cube(*args, **kwargs) Load a Mult-Extension-Fits image one frame as a

cube.
load_mef_as_multi(*args, **kwargs) Load a Mult-Extension-Fits image into multiple

frames.
load_region(*args, **kwargs) Load regions from a file which uses standard format-

ting.
load_rgb(*args, **kwargs) Load three images into a frame, each one for a dif-

ferent color.
make_region(*args, **kwargs) make an input reg file with [x,y,comment] to a stan-

dard reg file.
mark_region_from_array(*args, **kwargs) Mark regions on the viewer with a list of tuples as

input.
match(**kwargs) Match all other frames to the current frame.
nancolor(**kwargs) Set the not-a-number (Nan) color.

Continued on next page

9.4. imexam.ginga_viewer Module 129

https://docs.python.org/3/library/functions.html#int

imexam Documentation, Release 0.1.dev55+gef728ae

Table 9 – continued from previous page
panto_image(x, y) Change to x,y physical image coordinates.
panto_wcs(x, y[, system]) Pan to wcs location coordinates in image
readcursor() Returns image coordinate postion and key pressed.
rotate([value]) Rotate the current frame (in degrees).
save_header(*args, **kwargs) Save the header of the current image to a file.
save_regions(*args, **kwargs) Save the displayed regions on the current window to

a file.
save_rgb(*args, **kwargs) Save an rgb image frame that is displayed as an MEF

fits file.
scale([scale]) Scale the image intensity, zscale is used as the de-

fault.
set_region(*args, **kwargs) Display a region using the specifications in re-

gion_string.
show_window_commands() Print the available commands for the selected dis-

play.
showme() Raise the precendence of the display window.
showpix(*args, **kwargs) Display the pixel value table, closing the window

when done.
snapsave() Save a frame display as a PNG file.
start_event_loop()
transform([flipx, flipy, swapxy]) Transform the frame.
valid_data_in_viewer() Return bool if a valid file or array is loaded into the

viewer
view(img) Display numpy image array in current frame
zoom(zoomlevel) Zoom the image using the specified zoomlevel.
zoomtofit() Zoom the image to fit the display.

Methods Documentation

blink()
Blink multiple frames.

close()
Close the window.

cmap(color=None, load=None, invert=False, save=False, filename=’colormap.ds9’)
Set the color map table to something else, using a defined list of options.

Parameters

• color (string) – color must be set to one of the available color map names

• load (string, optional) – set to the filename which is a valid colormap lookup
table valid contrast values are from 0 to 10, and valid bias values are from 0 to 1

• invert (bool, optional) – invert the colormap

• save (bool, optional) – save the current colormap as a file

• filename (string, optional) – the name of the file to save the colormap to

contour_load()
Load a file with contour information.

crosshair(**kwargs)
Control the current position of the crosshair in the frame.

crosshair mode is turned on.

130 Chapter 9. Reference API

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

imexam Documentation, Release 0.1.dev55+gef728ae

cursor(**kwargs)
Move the cursor in the current frame to the specified image pixel.

it will also move selected regions

disp_header()
Display the fits header for the current data.

embed(width=600, height=650)
Embed the current window into the notebook.

frame()
Convenience function to report frames.

currently only 1 frame is supported per calling object in HTML5 display

get_data()
Return a numpy array of the data displayed in the current frame

Notes

This is the data array that the imexam() function from connect() uses for analysis

astropy.io.fits stores data in row-major format. So a 4d image would be [NAXIS4, NAXIS3, NAXIS2,
NAXIS1] just the one image is retured in the case of multidimensional data, not the cube

get_filename()
Return the filename currently associated with the data

get_frame_info()
Return more explicit information about the data in current frame.

get_header()
Return current fits header as string, None if there’s a problem.

get_image()
Return the AstroImage instance for the data in the viewer

get_slice_info()
Return the slice tuple that is currently displayed.

get_viewer_info()
Return a dictionary of information about all frames with data

grab()

grid(*args, **kwargs)
Turn the grid display on and off.

grid can be flushed with many more options

hideme()
Lower the display window in prededence.

iscube()
Return whether a cube image is displayed in the current frame.

load_fits(fname=None, extver=None)
Load fits image to current frame.

Parameters

• fname (string, FITS HDU) – The name of the file to be loaded. You can specify
the full extension in the name, such as filename_flt.fits[sci,1] or filename_flt.fits[1]

9.4. imexam.ginga_viewer Module 131

imexam Documentation, Release 0.1.dev55+gef728ae

• extver (int, optional) – The extension to load (EXTVER in the header)

Notes

Extname isn’t used here, ginga wants the absolute extension number, not the version number associated
with a name

load_mef_as_cube(*args, **kwargs)
Load a Mult-Extension-Fits image one frame as a cube.

load_mef_as_multi(*args, **kwargs)
Load a Mult-Extension-Fits image into multiple frames.

load_region(*args, **kwargs)
Load regions from a file which uses standard formatting.

load_rgb(*args, **kwargs)
Load three images into a frame, each one for a different color.

make_region(*args, **kwargs)
make an input reg file with [x,y,comment] to a standard reg file.

the input file should contains lines with x,y,comment

mark_region_from_array(*args, **kwargs)
Mark regions on the viewer with a list of tuples as input.

match(**kwargs)
Match all other frames to the current frame.

nancolor(**kwargs)
Set the not-a-number (Nan) color.

panto_image(x, y)
Change to x,y physical image coordinates.

Parameters

• x (float) – X location in physical coords to pan to

• y (float) – Y location in physical coords to pan to

panto_wcs(x, y, system=’fk5’)
Pan to wcs location coordinates in image

Parameters

• x (string) – The x location to move to, specified using the given system

• y (string) – The y location to move to

• system (string) – The reference system that x and y were specified in, they should be
understood by DS9

readcursor()
Returns image coordinate postion and key pressed.

rotate(value=None)
Rotate the current frame (in degrees).

the current rotation is printed with no params

Parameters value (float [degrees]) – Rotate the current frame {value} degrees If value
is None, then the current rotation is printed

132 Chapter 9. Reference API

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

imexam Documentation, Release 0.1.dev55+gef728ae

save_header(*args, **kwargs)
Save the header of the current image to a file.

save_regions(*args, **kwargs)
Save the displayed regions on the current window to a file.

save_rgb(*args, **kwargs)
Save an rgb image frame that is displayed as an MEF fits file.

scale(scale=’zscale’)
Scale the image intensity, zscale is used as the default.

Parameters scale (string) – The scale for ds9 to use, these are set strings of [lin-
ear|log|pow|sqrt|squared|asinh|sinh|histequ]

set_region(*args, **kwargs)
Display a region using the specifications in region_string.

show_window_commands()
Print the available commands for the selected display.

showme()
Raise the precendence of the display window.

showpix(*args, **kwargs)
Display the pixel value table, closing the window when done.

snapsave()
Save a frame display as a PNG file.

Parameters filename (string) – The name of the output PNG image

start_event_loop()

transform(flipx=None, flipy=None, swapxy=None)
Transform the frame.

Parameters

• flipx (boolean) – if True flip the X axis, if False don’t, if None leave current

• flipy (boolean) – if True flip the Y axis, if False don’t, if None leave current

• swapxy (boolean) – if True swap the X and Y axes, if False don’t, if None leave current

valid_data_in_viewer()
Return bool if a valid file or array is loaded into the viewer

view(img)
Display numpy image array in current frame

Parameters img (numpy array) – The array containing data, it will be forced to
numpy.array()

Examples

view(np.random.rand(100,100))

zoom(zoomlevel)
Zoom the image using the specified zoomlevel.

Parameters zoomlevel (integer) –

9.4. imexam.ginga_viewer Module 133

imexam Documentation, Release 0.1.dev55+gef728ae

Examples

zoom(6) zoom(-3)

zoomtofit()
Zoom the image to fit the display.

134 Chapter 9. Reference API

PYTHON MODULE INDEX

i
imexam.connect, 101
imexam.ds9_viewer, 115
imexam.ginga_viewer, 127
imexam.imexamine, 108

135

imexam Documentation, Release 0.1.dev55+gef728ae

136 Python Module Index

INDEX

Symbols
_ds9_process (imexam.ds9_viewer.ds9 attribute),

117
_ds9_unix_name (imexam.ds9_viewer.ds9 attribute),

117
_ext (imexam.ds9_viewer.ds9 attribute), 117
_extname (imexam.ds9_viewer.ds9 attribute), 117
_extver (imexam.ds9_viewer.ds9 attribute), 117
_filename (imexam.ds9_viewer.ds9 attribute), 117
_iscube (imexam.ds9_viewer.ds9 attribute), 117
_mef_file (imexam.ds9_viewer.ds9 attribute), 117
_naxis (imexam.ds9_viewer.ds9 attribute), 117
_need_to_purge (imexam.ds9_viewer.ds9 attribute),

117
_numaxis (imexam.ds9_viewer.ds9 attribute), 117
_quit_ds9_on_del (imexam.ds9_viewer.ds9 at-

tribute), 116
_tmpd_name (imexam.ds9_viewer.ds9 attribute), 117
_xpa_name (imexam.ds9_viewer.ds9 attribute), 116

A
aimexam() (imexam.connect.Connect method), 104
alignwcs() (imexam.connect.Connect method), 104
alignwcs() (imexam.ds9_viewer.ds9 method), 119
aper_phot() (imexam.imexamine.Imexamine

method), 110

B
blink() (imexam.connect.Connect method), 104
blink() (imexam.ds9_viewer.ds9 method), 119
blink() (imexam.ginga_viewer.ginga_general

method), 130

C
cimexam() (imexam.connect.Connect method), 104
clear_contour() (imexam.connect.Connect

method), 104
clear_contour() (imexam.ds9_viewer.ds9 method),

120
close() (imexam.connect.Connect method), 104
close() (imexam.ds9_viewer.ds9 method), 120
close() (imexam.ginga_viewer.ginga method), 128

close() (imexam.ginga_viewer.ginga_general
method), 130

close() (imexam.imexamine.Imexamine method), 110
cmap() (imexam.connect.Connect method), 104
cmap() (imexam.ds9_viewer.ds9 method), 120
cmap() (imexam.ginga_viewer.ginga_general method),

130
colorbar() (imexam.connect.Connect method), 104
colorbar() (imexam.ds9_viewer.ds9 method), 120
column_fit() (imexam.imexamine.Imexamine

method), 110
Connect (class in imexam.connect), 101
contour() (imexam.connect.Connect method), 104
contour() (imexam.ds9_viewer.ds9 method), 120
contour() (imexam.imexamine.Imexamine method),

110
contour_load() (imexam.connect.Connect method),

104
contour_load() (imexam.ds9_viewer.ds9 method),

120
contour_load() (imexam.ginga_viewer.ginga_general

method), 130
crosshair() (imexam.connect.Connect method), 104
crosshair() (imexam.ds9_viewer.ds9 method), 120
crosshair() (imexam.ginga_viewer.ginga_general

method), 130
cursor() (imexam.connect.Connect method), 104
cursor() (imexam.ds9_viewer.ds9 method), 121
cursor() (imexam.ginga_viewer.ginga_general

method), 130
curve_of_growth() (imexam.imexamine.Imexamine

method), 110
cutout() (imexam.imexamine.Imexamine method),

111

D
disp_header() (imexam.connect.Connect method),

104
disp_header() (imexam.ds9_viewer.ds9 method),

121
disp_header() (imexam.ginga_viewer.ginga_general

method), 131

137

imexam Documentation, Release 0.1.dev55+gef728ae

do_option() (imexam.imexamine.Imexamine
method), 111

ds9 (class in imexam.ds9_viewer), 116

E
eimexam() (imexam.connect.Connect method), 104
embed() (imexam.connect.Connect method), 104
embed() (imexam.ds9_viewer.ds9 method), 121
embed() (imexam.ginga_viewer.ginga_general

method), 131
exam (imexam.ginga_viewer.ginga_general attribute),

128

F
frame() (imexam.connect.Connect method), 104
frame() (imexam.ds9_viewer.ds9 method), 121
frame() (imexam.ginga_viewer.ginga_general

method), 131

G
gauss_center() (imexam.imexamine.Imexamine

method), 111
get() (imexam.ds9_viewer.ds9 method), 121
get_data() (imexam.connect.Connect method), 104
get_data() (imexam.ds9_viewer.ds9 method), 121
get_data() (imexam.ginga_viewer.ginga_general

method), 131
get_filename() (imexam.connect.Connect method),

104
get_filename() (imexam.ds9_viewer.ds9 method),

122
get_filename() (imexam.ginga_viewer.ginga_general

method), 131
get_frame_info() (imexam.connect.Connect

method), 105
get_frame_info() (imexam.ds9_viewer.ds9

method), 122
get_frame_info() (imexam.ginga_viewer.ginga_general

method), 131
get_header() (imexam.connect.Connect method),

105
get_header() (imexam.ds9_viewer.ds9 method), 122
get_header() (imexam.ginga_viewer.ginga_general

method), 131
get_image() (imexam.connect.Connect method), 105
get_image() (imexam.ds9_viewer.ds9 method), 122
get_image() (imexam.ginga_viewer.ginga_general

method), 131
get_options() (imexam.imexamine.Imexamine

method), 111
get_plot_name() (imexam.imexamine.Imexamine

method), 111
get_slice_info() (imexam.ds9_viewer.ds9

method), 122

get_slice_info() (imexam.ginga_viewer.ginga_general
method), 131

get_viewer_info() (imexam.connect.Connect
method), 105

get_viewer_info() (imexam.ds9_viewer.ds9
method), 122

get_viewer_info()
(imexam.ginga_viewer.ginga_general method),
131

gimexam() (imexam.connect.Connect method), 105
ginga (class in imexam.ginga_viewer), 127
ginga_general (class in imexam.ginga_viewer), 128
grab() (imexam.connect.Connect method), 105
grab() (imexam.ds9_viewer.ds9 method), 122
grab() (imexam.ginga_viewer.ginga_general method),

131
grid() (imexam.connect.Connect method), 105
grid() (imexam.ds9_viewer.ds9 method), 122
grid() (imexam.ginga_viewer.ginga_general method),

131

H
hideme() (imexam.connect.Connect method), 105
hideme() (imexam.ds9_viewer.ds9 method), 122
hideme() (imexam.ginga_viewer.ginga_general

method), 131
himexam() (imexam.connect.Connect method), 105
histogram() (imexam.imexamine.Imexamine

method), 111

I
imexam (imexam.connect.Connect attribute), 101
imexam() (imexam.connect.Connect method), 105
imexam.connect (module), 101
imexam.ds9_viewer (module), 115
imexam.ginga_viewer (module), 127
imexam.imexamine (module), 108
Imexamine (class in imexam.imexamine), 108
iscube() (imexam.ds9_viewer.ds9 method), 122
iscube() (imexam.ginga_viewer.ginga_general

method), 131

J
jimexam() (imexam.connect.Connect method), 105

K
kimexam() (imexam.connect.Connect method), 105

L
limexam() (imexam.connect.Connect method), 105
line_fit() (imexam.imexamine.Imexamine method),

112
load_fits() (imexam.connect.Connect method), 105

138 Index

imexam Documentation, Release 0.1.dev55+gef728ae

load_fits() (imexam.ds9_viewer.ds9 method), 122
load_fits() (imexam.ginga_viewer.ginga_general

method), 131
load_mef_as_cube() (imexam.connect.Connect

method), 105
load_mef_as_cube() (imexam.ds9_viewer.ds9

method), 123
load_mef_as_cube()

(imexam.ginga_viewer.ginga_general method),
132

load_mef_as_multi() (imexam.connect.Connect
method), 106

load_mef_as_multi() (imexam.ds9_viewer.ds9
method), 123

load_mef_as_multi()
(imexam.ginga_viewer.ginga_general method),
132

load_region() (imexam.connect.Connect method),
106

load_region() (imexam.ds9_viewer.ds9 method),
123

load_region() (imexam.ginga_viewer.ginga_general
method), 132

load_rgb() (imexam.connect.Connect method), 106
load_rgb() (imexam.ds9_viewer.ds9 method), 123
load_rgb() (imexam.ginga_viewer.ginga_general

method), 132

M
make_region() (imexam.connect.Connect method),

106
make_region() (imexam.ds9_viewer.ds9 method),

123
make_region() (imexam.ginga_viewer.ginga_general

method), 132
mark_region_from_array()

(imexam.connect.Connect method), 106
mark_region_from_array()

(imexam.ds9_viewer.ds9 method), 124
mark_region_from_array()

(imexam.ginga_viewer.ginga_general method),
132

match() (imexam.connect.Connect method), 106
match() (imexam.ds9_viewer.ds9 method), 124
match() (imexam.ginga_viewer.ginga_general

method), 132
mimexam() (imexam.connect.Connect method), 106

N
nancolor() (imexam.connect.Connect method), 106
nancolor() (imexam.ds9_viewer.ds9 method), 124
nancolor() (imexam.ginga_viewer.ginga_general

method), 132

new_plot_window() (imexam.imexamine.Imexamine
method), 112

O
option_descrip() (imexam.imexamine.Imexamine

method), 112

P
panto_image() (imexam.connect.Connect method),

106
panto_image() (imexam.ds9_viewer.ds9 method),

124
panto_image() (imexam.ginga_viewer.ginga_general

method), 132
panto_wcs() (imexam.connect.Connect method), 106
panto_wcs() (imexam.ds9_viewer.ds9 method), 125
panto_wcs() (imexam.ginga_viewer.ginga_general

method), 132
path (imexam.ds9_viewer.ds9 attribute), 116
plot_column() (imexam.imexamine.Imexamine

method), 112
plot_line() (imexam.imexamine.Imexamine

method), 113
plotname() (imexam.connect.Connect method), 106
print_options() (imexam.imexamine.Imexamine

method), 113

R
radial_profile() (imexam.imexamine.Imexamine

method), 113
readcursor() (imexam.connect.Connect method),

106
readcursor() (imexam.ds9_viewer.ds9 method), 125
readcursor() (imexam.ginga_viewer.ginga_general

method), 132
register() (imexam.imexamine.Imexamine method),

113
reopen() (imexam.connect.Connect method), 106
reopen() (imexam.ds9_viewer.ds9 method), 125
reopen() (imexam.ginga_viewer.ginga method), 128
report_stat() (imexam.imexamine.Imexamine

method), 113
reset_defpars() (imexam.imexamine.Imexamine

method), 114
rimexam() (imexam.connect.Connect method), 106
rotate() (imexam.connect.Connect method), 106
rotate() (imexam.ds9_viewer.ds9 method), 125
rotate() (imexam.ginga_viewer.ginga_general

method), 132
run_inet_ds9() (imexam.ds9_viewer.ds9 method),

125

S
save() (imexam.imexamine.Imexamine method), 114

Index 139

imexam Documentation, Release 0.1.dev55+gef728ae

save_figure() (imexam.imexamine.Imexamine
method), 114

save_header() (imexam.connect.Connect method),
106

save_header() (imexam.ginga_viewer.ginga_general
method), 132

save_regions() (imexam.connect.Connect method),
106

save_regions() (imexam.ds9_viewer.ds9 method),
125

save_regions() (imexam.ginga_viewer.ginga_general
method), 133

save_rgb() (imexam.connect.Connect method), 106
save_rgb() (imexam.ds9_viewer.ds9 method), 125
save_rgb() (imexam.ginga_viewer.ginga_general

method), 133
scale() (imexam.connect.Connect method), 107
scale() (imexam.ds9_viewer.ds9 method), 125
scale() (imexam.ginga_viewer.ginga_general

method), 133
set() (imexam.ds9_viewer.ds9 method), 126
set_aper_phot_pars()

(imexam.imexamine.Imexamine method),
114

set_colplot_pars()
(imexam.imexamine.Imexamine method),
114

set_column_fit_pars()
(imexam.imexamine.Imexamine method),
114

set_contour_pars()
(imexam.imexamine.Imexamine method),
114

set_curve_pars() (imexam.imexamine.Imexamine
method), 114

set_cutout_pars() (imexam.imexamine.Imexamine
method), 114

set_data() (imexam.imexamine.Imexamine method),
114

set_histogram_pars()
(imexam.imexamine.Imexamine method),
114

set_iraf_display() (imexam.ds9_viewer.ds9
method), 126

set_line_fit_pars()
(imexam.imexamine.Imexamine method),
114

set_lineplot_pars()
(imexam.imexamine.Imexamine method),
114

set_option_funcs()
(imexam.imexamine.Imexamine method),
114

set_plot_name() (imexam.imexamine.Imexamine

method), 115
set_plot_pars() (imexam.connect.Connect

method), 107
set_radial_pars() (imexam.imexamine.Imexamine

method), 115
set_region() (imexam.connect.Connect method),

107
set_region() (imexam.ds9_viewer.ds9 method), 126
set_region() (imexam.ginga_viewer.ginga_general

method), 133
set_surface_pars()

(imexam.imexamine.Imexamine method),
115

setlog() (imexam.connect.Connect method), 107
setlog() (imexam.imexamine.Imexamine method),

115
show_fit_models() (imexam.imexamine.Imexamine

method), 115
show_window_commands()

(imexam.connect.Connect method), 107
show_window_commands()

(imexam.ginga_viewer.ginga_general method),
133

show_xpa_commands() (imexam.ds9_viewer.ds9
method), 126

show_xy_coords() (imexam.imexamine.Imexamine
method), 115

showme() (imexam.connect.Connect method), 107
showme() (imexam.ds9_viewer.ds9 method), 126
showme() (imexam.ginga_viewer.ginga_general

method), 133
showpix() (imexam.connect.Connect method), 107
showpix() (imexam.ds9_viewer.ds9 method), 126
showpix() (imexam.ginga_viewer.ginga_general

method), 133
snapsave() (imexam.connect.Connect method), 107
snapsave() (imexam.ds9_viewer.ds9 method), 126
snapsave() (imexam.ginga_viewer.ginga_general

method), 133
start_event_loop()

(imexam.ginga_viewer.ginga_general method),
133

surface() (imexam.imexamine.Imexamine method),
115

T
timexam() (imexam.connect.Connect method), 107
transform() (imexam.ginga_viewer.ginga_general

method), 133

U
unlearn() (imexam.connect.Connect method), 107
unlearn_all() (imexam.imexamine.Imexamine

method), 115

140 Index

imexam Documentation, Release 0.1.dev55+gef728ae

V
valid_data_in_viewer()

(imexam.connect.Connect method), 107
valid_data_in_viewer()

(imexam.ds9_viewer.ds9 method), 127
valid_data_in_viewer()

(imexam.ginga_viewer.ginga_general method),
133

view (imexam.ginga_viewer.ginga_general attribute),
128

view() (imexam.connect.Connect method), 108
view() (imexam.ds9_viewer.ds9 method), 127
view() (imexam.ginga_viewer.ginga_general method),

133

W
wait_time (imexam.ds9_viewer.ds9 attribute), 116
wimexam() (imexam.connect.Connect method), 108
window (imexam.connect.Connect attribute), 101

Z
zoom() (imexam.connect.Connect method), 108
zoom() (imexam.ds9_viewer.ds9 method), 127
zoom() (imexam.ginga_viewer.ginga_general method),

133
zoomtofit() (imexam.connect.Connect method), 108
zoomtofit() (imexam.ds9_viewer.ds9 method), 127
zoomtofit() (imexam.ginga_viewer.ginga_general

method), 134

Index 141

	Requirements
	How to Install
	Usage
	Common Problems
	Simple Walkthrough
	Simple Walkthrough

	User documentation
	The imexam() method
	imexam User Methods
	Convenience functions for DS9’s (XPA) commands
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Software Dependencies
	IRAF imexamine capabilities
	Comparison with the IRAF verison of imexamine

	Reporting Issues
	Contributing
	Reference API
	imexam.connect Module
	imexam.imexamine Module
	imexam.ds9_viewer Module
	imexam.ginga_viewer Module

	Python Module Index
	Index

